6. Probabilities: Probabilistic LTS and Statistical Model Checking

José Proença System Verification (CC4084) 2025/2026

CISTER - U.Porto, Porto, Portugal

https://fm-dcc.github.io/sv2526

Where we are

Syllabus

- Introduction to model-checking
- CCS: a simple language for concurrency
 - Syntax
 - Semantics
 - Equivalence
 - mCRL2: modelling
- Dynamic logic
 - Syntax
 - Semantics
 - Relation with equivalence
 - mCRL2: verification

- Timed Automata
 - Syntax
 - Semantics (composition, Zeno)
 - Equivalence
 - UPPAAL: modelling
- Temporal logics (LTL/CTL)
 - Syntax
 - Semantics
 - UPPAAL: verification
- Probabilistic and stochastic systems
 - Going probabilistic
 - UPPAAL: monte-carlo

Going probabilistic

Motivation

Systems can get very complex

- E.g., 5 components, 3 possible traces each
- No communication (pure interleaving)
- Many permutations

Motivation

Systems can get very complex

- E.g., 5 components, 3 possible traces each
- No communication (pure interleaving)
- Many permutations
- More components, more traces untreatable

Motivation

Systems can get very complex

- E.g., 5 components, 3 possible traces each
- No communication (pure interleaving)
- Many permutations
- More components, more traces untreatable
- Verifying deadlock freedom (and others) requires traversing all states
- Approximation:
 - traverse only part of the states
 - give more priority to some actions
 - return (statistically) likelihood of a given property

Recall: A taxonomy of transition systems

- $\alpha: S \to N \times S$ Moore machine
- $\alpha: S \to Bool \times S^N$ deterministic automata
- $\alpha: S \to \text{Bool} \times P(S)^N$ non-deterministic automata (reactive)
- $\alpha: S \to P(N \times S)$ non deterministic LTS (generative)
- $\alpha: S \to (S+1)^N$ partial deterministic LTS
- $\alpha: S \to P(S)$ unlabelled TS
- $\alpha: S \to \mathrm{D}(S)$ Markov chain

Bringing probabilities to transition systems

Markov chains

$$\alpha: \mathcal{S} \to \mathrm{D}(\mathcal{S})$$

where D(S) is the set of all discrete probability distributions on set S

A Markov chain goes from a state s to a state s' with probability p if

$$\alpha(s) = \mu$$
 with $\mu(s') = p > 0$

Recall discrete distributions

Recall

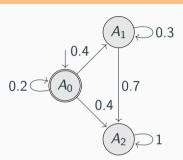
 $\mu: \mathcal{S} \rightarrow [0,1]$ is a discrete probability distribution if

- $\{s \in S \mid \mu(s) > 0\}$, is finite (called the support of μ), and
- $\bullet \quad \sum_{s \in S} \mu(s) = 1$

Examples

- Dirac distribution: $\mu_s^1 = \{s \to 1\}$
- Product distribution: $(\mu_1 \times \mu_2)\langle s, t \rangle = \mu_1(s) \times \mu_2(t)$

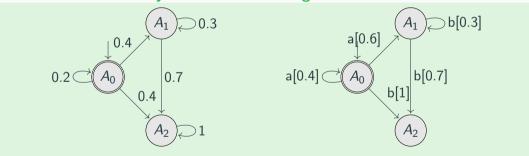
Example



Reactive PTS (or Markov Decision Process)

$$\alpha: S \to (D(S) + 1)^N$$

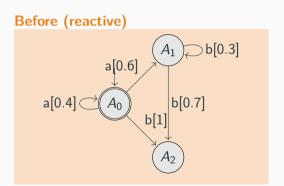
Ex. 6.1: Formalise the system below on the right as a function

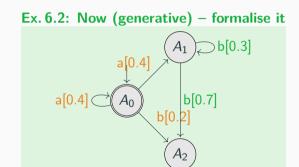


Notions of bisimulation arise naturally.

Generative PTS

$$\alpha: \mathcal{S} \to \mathrm{D}(\mathcal{S} \times \mathcal{N}) + 1$$





Generative Timed PTS (as in Uppaal)

$$\alpha: S \to \mathrm{D}(S \times N) + 1$$

Generative Timed PTS (as in Uppaal)

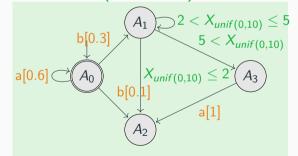
$$\alpha: S \to D(S \times N) + 1$$

$$\alpha: S \to D(S \times N) + D_{cont}(\mathcal{R}_0^+ \times S)$$

Notes

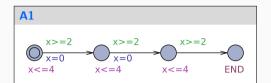
- Continuous time: continuous distribution
- Probabilities both at
 - discrete transitions and
 - continuous delays

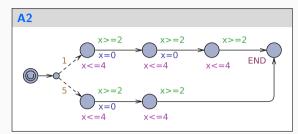
Ex. 6.3: Now (Timed PTS)

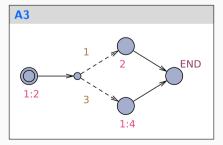


Probabilities in Uppaal

Stochastic Timed Automata – examples







Stochastic Timed automata Definition

$$\langle L, L_0, Act, C, Tr, Inv \rangle$$

where

- L is a set of locations, and $L_0 \subseteq L$ the set of initial locations
- Act is a set of actions and C a set of clocks
- $Tr \subseteq L \times (\mathcal{C}(C) \cup \mathbb{N}) \times Act \times \mathcal{P}(C) \times L$ is the transition relation

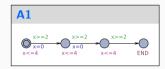
$$\ell_1 \xrightarrow{g,a,U} \ell_2$$
 or

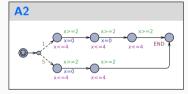
$$\ell_1 \xrightarrow{\mathbf{w}, \mathsf{a}, \mathsf{U}} \ell_2$$

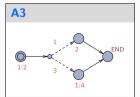
denotes a transition from location ℓ_1 to ℓ_2 , labelled by a, enabled if guard g is valid, which, when performed, resets the set U of clocks, with a probability given by the weight w

■ $Inv : L \longrightarrow \mathcal{C}(C) + \mathbb{Q}$ is the assignment of invariants or rates (of an exponential distribution) to locations

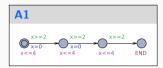
where C(C) denotes the set of clock constraints over a set C of clock variables

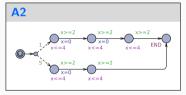


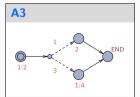




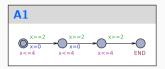
• Probability of $\langle A1_0, \overline{0} \rangle \xrightarrow{0.5} \langle A1_0, \overline{0.5} \rangle$?

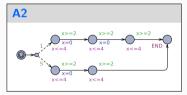


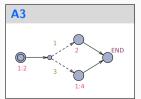




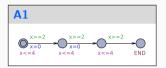
- Probability of $\langle A1_0, \overline{0} \rangle \xrightarrow{0.5} \langle A1_0, \overline{0.5} \rangle$?
- Probability of reaching $A1_1$ within 1?

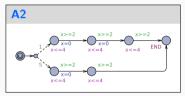


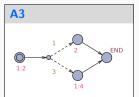




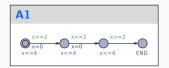
- Probability of $\langle A1_0, \overline{0} \rangle \xrightarrow{0.5} \langle A1_0, \overline{0.5} \rangle$?
- Probability of reaching $A1_1$ within 1?
- Probability of reaching $A1_1$ within 5?

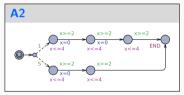


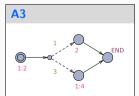




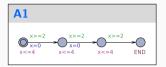
- Probability of $\langle A1_0, \overline{0} \rangle \xrightarrow{0.5} \langle A1_0, \overline{0.5} \rangle$?
- Probability of reaching $A1_1$ within 1?
- Probability of reaching A1₁ within 5?
- Probability of reaching A2₁ (above) within 5?

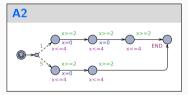


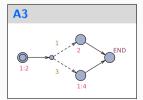




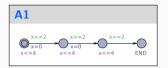
- Probability of $\langle A1_0, \overline{0} \rangle \xrightarrow{0.5} \langle A1_0, \overline{0.5} \rangle$?
 - Probability of reaching $A1_1$ within 1?
- Probability of reaching A1₁ within 5?
- Probability of reaching $A2_1$ (above) within 5?
- Expected time to reach $A1_1$?

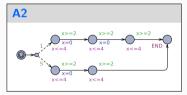


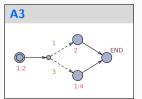




- $\bullet \ \ \, \mathsf{Probability} \,\, \mathsf{of} \,\, \langle \mathsf{A}1_0, \overline{0} \rangle \xrightarrow{0.5} \langle \mathsf{A}1_0, \overline{0.5} \rangle ? \\$
- Probability of reaching $A1_1$ within 1?
- Probability of reaching $A1_1$ within 5?
- Probability of reaching $A2_1$ (above) within 5?
- Expected time to reach A1₁?
- Expected time to reach A3₁ or A3₂?

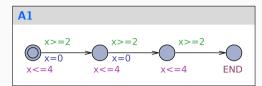


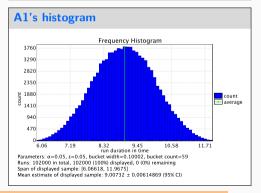




- Probability of $\langle A1_0, \overline{0} \rangle \xrightarrow{0.5} \langle A1_0, \overline{0.5} \rangle$?
- Probability of reaching A1₁ within 1?
- Probability of reaching $A1_1$ within 5?
- Probability of reaching $A2_1$ (above) within 5?
- Expected time to reach A1₁?
- Expected time to reach $A3_1$ or $A3_2$?
- Expected time to reach A1_{END}?
- Expected time to reach A2_{END}?
- Expected time to reach A3_{END}?

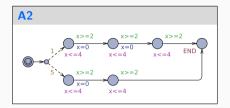
A1: When does it end?

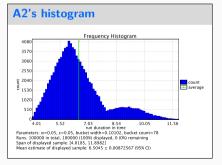




- Run 102000 times
- Histogram: how many times it took [9..9.1] seconds?
- ...

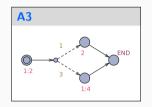
A2: When does it end?

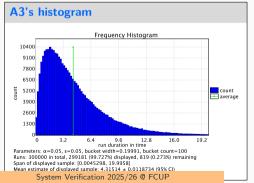




- Run 100000 times
- Histogram: how many times it took [9..9.1] seconds?
- · ...

A3: When does it end?





- Run 300000 times
- Histogram: how many times it took [9..9.1] seconds?
- ..

Probabilistic queries in Uppaal

Probabilistic queries

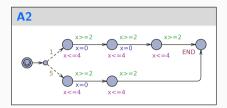
- Pr[c<=10; 100]([] safe) runs 100 stochastic simulations and estimates the probability of safe remaining true within 10 cost units, based on 100 runs.
- $\Pr[<=10]$ (<> good) runs a number of stochastic simulations and estimates the probability of good eventually becoming true within 10 time units. The number of runs is decided based on the probability interval precision ($\pm\varepsilon$) and confidence level (level of significance α).
- Pr[<=10] (<> good) >= 0.5 checks if the probability of reaching good within 10 time units is greater than 50% (less runs than calculating the probability, using "Walds's algorithm")
- E[<=10; 100] (max: cost) runs 100 stochastic simulations and estimates the maximal value of cost expression over 10 time units of stochastic simulation.

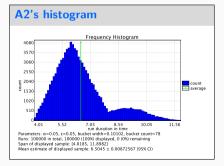
More at https://docs.uppaal.org/language-reference/query-syntax/statistical_queries/

Running a single simulation

- simulate[<=10] { x, y } creates one stochastic simulation run of up to 10 time units in length and plot the values of x and y expressions over time (after checking, right-click the query and choose a plot).</p>
- Variations: [c<=10] / [#<=10] based on clock c or based on the number of transitions.

Replicate the histograms

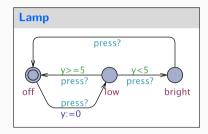




Ex. 6.4: Replicate the visualisation

Ex. 6.5: Replicate the visualisation also for A1 and A3

Exercise: create a stochastic simulation of the lamp



Ex. 6.6: Adapt the model to make it stochastic

Ex. 6.7: Adapt requirements to make them probabilistic

- 1. The lamp can become bright;
- 2. The lamp will eventually become bright;
- 3. The lamp can never be on for more than 3600s;
- 4. It is possible to never turn on the lamp;
- 5. Whenever the light is bright, the clock *y* is non-zero;
- 6. Whenever the light is bright, it will eventually become off.