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Motivation FC

Specifying an airbag saying that in a car crash the airbag eventually inflates maybe not enough,
but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical result of the com-
putation, but also on the time at which the results are produced

[Baier & Katoen, 2008]
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Examples of time-critical systems FC

Lip-synchronization protocol

Synchronizes the separate video and audio sources bounding on the amount of time
mediating the presentation of a video frame and the corresponding audio frame. Humans
tolerate less than 160 ms.

Bounded retransmission protocol
Controls communication of large files over infrared channel between a remote control unit
and a video/audio equipment. Correctness depends crucially on

= transmission and synchronization delays

= time-out values for times at sender and receiver

And many others...
= medical instruments

= hybrid systems (eg for controlling industrial plants)
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Syllabus

= Introduction to model-checking

= CCS: a simple language for
concurrency
= Syntax
= Semantics

= Equivalence
= mCRL2: modelling
= Dynamic logic
= Syntax
= Semantics
= Relation with equivalence
= mCRL2: verification

System Verification 2025/26 @ FCUP

= Timed Automata

= Syntax

= Semantics (composition, Zeno)

= Equivalence
= UPPAAL: modelling
= Temporal logics (LTL/CTL)

= Syntax
= Semantics
= UPPAAL: verification

ic

= Probabilistic and stochastic systems

= Going probabilistic
= UPPAAL: monte-carlo

Motivation
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4. Modelling in UPPAAL
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Motivation

= timed transition systems, timed Petri nets, timed 10 automata, timed process algebras
and other formalisms associate lower and upper bounds to transitions, but no time
constraints to transverse the automaton.

= Expressive power is often somehow limited and infinite-state LTS (introduced to express
dense time models) are difficult to handle in practice
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Motivation

Example
Typical process algebra tools are unable to express a system which has one action a which
can only occur at time point 5 with the effect of moving the system to its initial state.

This example has, however, a simple description in terms of time measured by a stopwatch:

1. Set the stopwatch to 0

2. When the stopwatch measures 5, action a can occur. If a occurs go to 1., if not idle
forever.
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Motivation FC

This suggests resorting to an automaton-based formalism with an explicit notion of clock
(stopwatch) to control availability of transitions.

Timed Automata [Alur & Dill, 90]‘

emphasis on decidability of the reachability problem and corresponding practically efficient
algorithms

infinite underlying timed transition systems are converted to finitely large symbolic
transition systems where reachability becomes decidable (region or zone graphs)

Associated tools

= UPPAAL [Behrmann, David, Larsen, 04] = PRISM [Parker, Kwiatkowska, 00]

= IMITATOR [André, 09] = KRONOS [Bozga, 98]

System Verification 2025/26 @ FCUP Motivation
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| UPPAAL = (Uppsala University + Aalborg University) [1995] |

= A toolbox for modeling, simulation and verification of real-time systems

= where systems are modeled as networks of timed automata enriched with integer
variables, structured data types, channel syncronisations and urgency annotations

= Properties are specified in a subset of CTL

www.uppaal.org
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Timed Automata



Timed automata

Finite-state machine equipped with a finite set of real-valued clock variables (clocks) ‘

Clocks

= dense-time model

= clocks can only be inspected or

= reset to zero, after which they start increasing their value implicitly as time progresses
= the value of a clock corresponds to time elapsed since its last reset

= all clocks proceed synchronously (at the same rate)
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Timed automata Definition FC

(L, Lo, Act, C, Tr, Inv)
where
= [ is a set of locations, and Ly C L the set of initial locations
= Act is a set of actions and C a set of clocks

s Tr CLxC(C)x Act x P(C) x L is the transition relation

,a,U
0 £2% 0,

denotes a transition from location ¢; to /5, labelled by a, enabled if guard g is valid,
which, when performed, resets the set U of clocks

= Inv:L — C(C) is the assignment of invariants to locations

where C(C) denotes the set of clock constraints over a set C of clock variables
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Example: the lamp interrupt

(extracted from UPPAAL)

Lamp

y<5
press?
bright

Ex.5.1: Define (L, Ly, Act, C, Tr, Inv).
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Clock constraints

C(C) denotes the set of clock constraints over a set C of clock variables. Each constraint is
formed according to
g = x0On | x—yOn | gNhg | true

where x,y € C,neNand O € {<,<,>,>,=}

used in

= transitions as guards (enabling conditions)

’a transition cannot occur if its guard is invalid ‘

= locations as invariants (safety specifications)

’a location must be left before its invariant becomes invalid

Note
Invariants are the only way to force transitions to occur

System Verification 2025/26 @ FCUP Timed Automata
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guard

location

action
reset-set

—@ )
x<3 e

\

Invariant

Timed Automata
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Transition guards & location invariants

Demo (in Uppaal)

Process 1 Process 2 Process 3
X>=2 xX>=2 x>=2 && x<=3
loc loc loc
x:=0 x:=0 x:=0
x>=3
System Verification 2025/26 @ FCUP Timed Automata 15 / 48



Parallel composition of timed automata

= Action labels as channel identifiers
= Communication by forced handshacking over a subset of common actions

= |s defined as an automaton construction over a finite set of timed automata originating a
so-called network of timed automata

System Verification 2025/26 @ FCUP Timed Automata
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Parallel composition of timed automata FC

Let H C (Act; N Acty) — {7}. The parallel composition of ta; and ta, synchronizing on H is
the timed automata

ta; ”H tay := <L1 X Ly, Loy X L0.2-ACtHH«, G UG, TI‘HH., /anH>

where

" ACtHH = ((ACtl U ACt2) = H) U {T}
u /I"IVHH<€1,£2> = lnvl(fl) A Inv2(£2)
= Try, is given by:
o (00, 0) B2Y 00 0 if ag HAl £2% ¢
( 1
o (0, 0) 2% 0y i ag HAL £2Y 0

n gl’gz g,'r U f’,f’ if ac H /\51 g1,a,Ur 7 /\52 2,a,Us /2
1 == £ A
with g=g1 Agr and U= U, U U,
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Example: the lamp interrupt as a closed system FC

Lamp

press? é Uppaal:
\F/)Te:sg? ©® p\|{e<5557 = takes H = Act; N Act, (actually as

o bright complementary actions denoted by the ?

off
ress?

y=0 and | annotations)
User = only deals with closed systems
press!
g Ex. 5.2: Define the TA of the composition.
idle

System Verification 2025/26 @ FCUP Timed Automata 18



Exercise:

worker, hammer, nail

Worker
z>=10
done!

" work
res 2<=60
go!
z:=0

Hammer
y>=5
done?
free busy o1
© @ |
x:=0
go?
x:=0, y:=0
Nail
next?
O——F—0O0—F"0
up half done

System Verification 2025/26 @ FCUP

Timed Automata

ic

Ex.5.3: Define the TA of the composition.
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Semantics




Timed Labelled Transition Systems FC

Syntax Semantics

(How to write) (How to execute)

Process Languages LTS (Labelled Transition Systems)
Timed Automaton TLTS (Timed LTS)

System Verification 2025/26 @ FCUP Semantics

20 / 48



Timed Labelled Transition Systems FC

Syntax Semantics

(How to write) (How to execute)

Process Languages LTS (Labelled Transition Systems)
Timed Automaton TLTS (Timed LTS)

Timed LTS

Introduce delay transitions to capture the passage of time within a LTS:

a . o .
s 5 s’ for a € Act, are ordinary transitions due to action occurrence

d "
s 5 s’ for d € R, are delay transitions

subject to a number of constraints, eg,
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Dealing with time in system models FC

Timed LTS
= time additivity

d ' d—d’
(s >s'AN0<d <d) = s—s" —— & for some state s”

= delay transitions are deterministic

d d
(s—=sAs—5s")= s =4"

System Verification 2025/26 @ FCUP Semantics 21 /48



Semantics of Timed Automata

Semantics of TA:
Every TA ta defines a TLTS
T (ta)

whose states are pairs
(location, clock valuation)

with infinitely, even uncountably many states, and infinite branching

System Verification 2025/26 @ FCUP Semantics
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Clock valuations

Definition
A clock valuation 7) for a set of clocks C is a function

n:C—R§

assigning to each clock x € C its current value 7 x.

Satisfaction of clock constraints

nExOn & nxOn
nEx—yOn <& (nx—ny)dn
nEeaNg & nkEanrnEe
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Operations on clock valuations

Delay
For each d € R¢, valuation 7 + d is given by

(m+d)x =nx + d

Reset
For each R C C, valuation n[R] is given by

nRlx = nx <x¢R
n[R]x = 0 =x€eR

System Verification 2025/26 @ FCUP Semantics



Let ta= (L, Lo, Act, C, Tr, Inv)

T(ta) = (5,5 €S, N, T)

where

e S={{ln) e Lx (RY) | 0= Inv(D)}

w So={{lo,n) | o € Lo AN nx=0forall x e C}

» N = Act UR] (ie, transitions can be labelled by actions or delays)
= TCSxNxSisgiven by:

() S0y <« nkEg A =qlUl A1y inv(l’)

() S n+d) < Jyer: 0+ d = Inv(l)

g,a,U
|——=1"eTr
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Ex.5.4: Define 7 (SwitchA)

S—
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Example: the simple switch

Switch

off

©)

x>=1

X
Il
o

on

X<=2

Ex. 5.4: Define 7 (SwitchA)

S={{off,T) | t e RE} U {(on,F) |0 < t <2}

where t is a shorthand for 7 such that nx =t

System Verification 2025/26 @ FCUP

Semantics
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Example: the simple switch

Ex. 5.4: Define 7 (SwitchA)

T=uca

System Verification 2025/26 @ FCUP

Switch
x>=1
off on
X<=2
x:=0
Semantics



Example: the simple switch FC

Switch
x>=1
off on
X<=2
x:=0
Ex. 5.4: Define 7 (SwitchA)
(off, T) L (off, T+ d) forall t,d >0
(off,E) % (on,0) for all t >0
(on,t) — LR (on t+d) forall t,d >0and t +d <2
(on,T) 25 (off,T) forall1 <t <2

System Verification 2025/26 @ FCUP Semantics 27 / 48



= The elapse of time in timed automata only takes place in locations:
= ... actions take place instantaneously

= Thus, several actions may take place at a single time unit

C System Verfcation 2025/26 @ FCUP Semantics -



Behaviours FC

= Paths in 7 (ta) are discrete representations of continuous-time behaviours in ta
= ... at least they indicate the states immediately before and after the execution of an action

= However, as interval delays may be realised in uncountably many different ways, different
paths may represent the same behaviour

System Verification 2025/26 @ FCUP Semantics 29 / 48



Behaviours FC

= Paths in 7 (ta) are discrete representations of continuous-time behaviours in ta
= ... at least they indicate the states immediately before and after the execution of an action

= However, as interval delays may be realised in uncountably many different ways, different
paths may represent the same behaviour

= ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:
= time-convergent paths
= timelock paths

= zeno paths

System Verification 2025/26 @ FCUP Semantics 29



Time-convergent paths

</>77> </7]+d1> </77+d1+d2> </77+d1+d2+d3>

such that
Vien. d; >0 A Zd,-:d
ieN

ie, the infinite sequence of delays converges toward d

= Time-convergent path are counterintuitive; as their existence cannot be avoided, they are
simply ignored in the semantics of Timed Automata

= Time-divergent paths are the ones in which time always progresses

System Verification 2025/26 @ FCUP Semantics

48



Time-convergent paths

Definition

An infinite path fragment p = s S, S1 o s time-divergent if ExecTime(p) = co
Otherwise is time-convergent.

where

ExecTime(p) = Z ExecTime(d;)

i=0..00
0 «<=d€Act
ExecTime(d) = y
§ <6eR]

for p a path and § a label in T (ta)

System Verification 2025/26 @ FCUP Semantics



Timelock paths FC

Definition
A path is timelock if it contains a state with a timelock, ie, a state from which there is not
any time-divergent path

A timelock represents a situation that causes time progress to halt (e.g. when it is impossible
to leave a location before its invariant becomes invalid)

= any terminal state (# terminal location) in 7 (ta) contains a timelock

= ... but not all timelocks arise as terminal states in 7 (ta)

System Verification 2025/26 @ FCUP Semantics
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x<=1 and x<2

off

State (on,2) ...

~ System Verification 2025/26 @ FCUP Semantics 3348



x<=1 and x<2
off on
X<=2
x:=0
State (on, 2) is reachable through path
(off,0) =% (on, 0) (on, 2)

and is terminal

C System Verfcation 2025/26 @ FCUP S .



x<=1 and x<2

off on

x<3

State (on,2) ...

~ System Verification 2025/26 @ FCUP Semantics 34/ 48



x<=1 and x<2

off on

x<3

State (on,2) is not terminal but has a convergent path:

(on,2)(on,2.9)(on,2.99)(on,2.999)...

~ System Verification 2025/26 @ FCUP Semantics 34/ 48



Zeno

In a Timed Automaton
= The elapse of time only takes place at locations

= Actions occur instantaneously: at a single time instant several actions may take place

. it may perform infinitely many actions in a finite time interval

(non realizable because it would require infinitely fast processors)

System Verification 2025/26 @ FCUP Semantics
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Zeno FC

In a Timed Automaton
= The elapse of time only takes place at locations

= Actions occur instantaneously: at a single time instant several actions may take place

. it may perform infinitely many actions in a finite time interval

(non realizable because it would require infinitely fast processors)

Definition
An infinite path fragment p is zeno if it is time-convergent and infinitely many actions occur
along it

A timed automaton ta is non-zeno if there is not an initial zeno path in 7 (ta)

System Verification 2025/26 @ FCUP Semantics
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Zeno FC

Example
Suppose the user can press the in button when the light is on in

Zeno

In doing so clock x is reset to 0 and light stays on for more 2 time units (unless the button is
pushed again ...)

System Verification 2025/26 @ FCUP Semantics 36 / 48



Zeno FC

Example
Typical paths: The user presses in infinitely fast:

(off,0) 22 (on,0) 2 (on,0) 2 (on,0) 2 (on,0) 2 ..

The user presses in faster and faster:

(off,0) 2 (on,0) 22 (on,0.5) 2 (on, 0) 22 (on,0.25) 2 (on,0) 2225 ...

’ How can this be fixed?

Time shall pass!

System Verification 2025/26 @ FCUP Semantics
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Exercise

Ex.5.5: Recall our lamp

Lamp

:

bright

y<=3600

Describe a time-divergent path, if it exists.
Describe a time-convergent path, if it exists.

Describe a timelock path, if it exists.

= G0 Y =

Is this automata non-zeno? Justify.

System Verification 2025/26 @ FCUP Semantics



Zeno FC

Sufficient criterion for nonzenoness
A timed automaton is nonzeno if on any of its control cycles time advances with at least
some constant amount (> 0). Formally, if for every control cycle

80,20, Uo g1,a1,Ur &nyan,Un
EO 61 . 60

there exists a clock x € C such that

1. xe U; (for 0 < i< n)

2. for all clock valuations 7), there is a ¢ € N+ such that

n(x) <c = ((nkg) VvV —Inv({)) for some 0 < j < n
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Both

= timelocks

= Zenoness

are modelling flaws and need to be avoided.

Example
In the example above, it is enough to impose a non zero minimal delay between successive
button pushings.

~ System Verification 2025/26 @ FCUP Semantics 40/ 48



Modelling in Uppaal




. an editor, simulator and model-checker for TA with extensions ...

Editor.
= Templates and instantiations

= Global and local declarations

= System definition

Simulator.
= Viewers: automata animator and message sequence chart
= Control (eg, trace management)
= Variable view: shows values of the integer variables and the clock constraints defining

symbolic states

Verifier.

= (see next session)
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Extensions (modelling view) FC

= templates with parameters and an instantiation mechanism

= data expressions over bounded integer variables (eg, int[2..45] x) allowed in guards,
assigments and invariants

= rich set of operators over integer and booleans, including bitwise operations, arrays,
initializers ... in general a whole subset of C is available

= non-standard types of synchronization

= non-standard types of locations

System Verification 2025/26 @ FCUP Modelling in UPPAAL 42
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Extension: broadcast synchronization

= A sender can synchronize with an arbitrary number of receivers
= Any receiver than can synchronize in the current state must do so

= Broadcast sending is never blocking (the send action can occur even with no receivers).

System Verification 2025/26 @ FCUP Modelling in UPPAAL



Extension: urgent synchronization FC

Channel a is declared urgent chan a if both edges are to be
P: Q: taken as soon as they are ready (simultaneously in locations ¢;

ORG-S

Note the problem can not be solved with invariants because
locations ¢ and s; can be reached at different moments

= No delay allowed if a synchronization transition on an urgent

o e channel is enabled

= Edges using urgent channels for synchronization cannot have
time constraints (ie, clock guards)
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Extension: urgent location FC

P Q:

|1 |1

a? . : . . :
a? = Time does not progress but interleaving with normal location

X:= I is allowed

i (

@0 m = Both models are equivalent:
X==
bl b! = but the use of urgent locations reduces the number of clocks
) in a model and simplifies analysis
|3 |3
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Extension: committed location FC

System Verification 2025/26 @ FCUP

delay is not allowed and the committed transition must be
left in the next instant (or one of them if there are several),
i.e., next transition must involve an outgoing edge of at least
one of the committed locations

Our aim is to pass the value k to variable j (via global
variable t)

Location n is committed to ensure that no other automata
can assign j before the assignment j :=t

Modelling in UPPAAL



The train-gate example

Train(id)

x>=3
leave[id]!

Cross
x<=5

Safe @

apprlid]!
x=0
xX>=7
x=0
Appr Start
x<=20 x<= 15

x<=10
stoplid]?

golid]?
x=0

Stop

System Verification 2025/26 @ FCUP

Events model approach/leave, order to stop/go
A train cannot be stopped or restart instantly
After approaching it has 10m to receive a stop.
After that it takes further 10m to reach the cross

After restarting takes 7 to 15m to reach the cross and
3-bm to cross

Modelling in UPPAAL 47



len >0
gol[front()]!

e:id_t e:id_t
len == e == front()
apprle]? leave[e]?

enqueue(e) | dequeue()

e:id_t
apprle]?
enqueue(e)

Occ

stopltail()]!

= Note the use of parameters and the select clause on transitions

= C-like program under the hood

Modelling in UPPAAL
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