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Syllabus

• Introduction to model-checking
• CCS: a simple language for

concurrency
• Syntax
• Semantics
• Equivalence
• mCRL2: modelling

• Dynamic logic
• Syntax
• Semantics
• Relation with equivalence
• mCRL2: verification

• Timed Automata
• Syntax
• Semantics (composition, Zeno)
• Equivalence
• UPPAAL: modelling

• Temporal logics (LTL/CTL)
• Syntax
• Semantics
• UPPAAL: verification

• Probabilistic and stochastic systems
• Going probabilistic
• UPPAAL: monte-carlo
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Recall: What’s in a logic?



A logic

A language
i.e. a collection of well-formed expressions to which meaning can be assigned.

A semantics
describing how language expressions are interpreted as statements about something.

A deductive system
i.e. a collection of rules to derive in a purely syntactic way facts and relationships among
semantic objects described in the language.

Note

• a purely syntactic approach (up to the 1940’s; the sacred form)

• a model theoretic approach (A. Tarski legacy)
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Semantic reasoning: models

• sentences

• models & satisfaction: M |= ϕ

• validity: |= ϕ (ϕ is satisfied in every possible structure)

• logical consequence: Φ |= ϕ (ϕ is satisfied in every model of Φ)

• theory: Th Φ (set of logical consequences of a set of sentences Φ)
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Syntactic reasoning: deductive systems

Deductive systems ⊢
• sequents

• Hilbert systems

• natural deduction

• tableaux systems

• resolution

• · · ·

• derivation and proof

• deductive consequence: Φ ⊢ ϕ

• theorem: ⊢ ϕ
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Soundness & completeness

• A deductive system ⊢ is sound wrt a semantics |= if for all sentences ϕ

⊢ ϕ =⇒ |= ϕ

(every theorem is valid)

• · · · complete ...
|= ϕ =⇒ ⊢ ϕ

(every valid sentence is a theorem)
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Consistency & refutability

For logics with negation and a conjunction operator

• A sentence ϕ is refutable if ¬ϕ is a theorem (i.e. ⊢ ¬ϕ)

• A set of sentences Φ is refutable if some finite conjunction of elements in Φ is refutable

• ϕ or Φ is consistent if it is not refutable.
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Examples

M |= ϕ

• Propositional logic (logic of uninterpreted assertions; models are truth assignments)

• Equational logic (formalises equational reasoning; models are algebras)

• First-order logic (logic of predicates and quatification over structures; models are
relational structures)

• Modal logics

• ...
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Modal Logic



Modal logic (from P. Blackburn, 2007)

Over the years modal logic has been applied in many different ways. It has been used as a tool
for reasoning about time, beliefs, computational systems, necessity and possibility, and much
else besides.

These applications, though diverse, have something important in common: the key ideas they
employ (flows of time, relations between epistemic alternatives, transitions between
computational states, networks of possible worlds) can all be represented as simple graph-like
structures.

Modal logics are

• tools to talk about relational, or graph-like structures.

• fragments of classical ones, with restricted forms of quantification ...

• ... which tend to be decidable and described in a pointfree notations.
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Basic Modal Logic

Syntax

ϕ ::= p | true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ! ϕ2 | ⟨α⟩ϕ | [α]ϕ

where p ∈ PROP and α ∈ ACT

Disjunction (∨) and equivalence (↔) are defined by abbreviation.
The signature of the basic modal language is determined by sets:

- PROP of propositional symbols (typically assumed to be denumerably infinite) and
- ACT of structured actions (or programs), also called modality symbols.
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Basic Modal Logic

Syntax

ϕ ::= p | true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ! ϕ2 | ⟨α⟩ϕ | [α]ϕ

where p ∈ PROP and α ∈ ACT

Ex. 4.1: Interpreting formulas

• ⟨drinkCoffee⟩ energetic: I will now drink coffee and will be in an energetic state

• [drink] ¬thirsty : If I drink anything now, I will not be in a thirsty state

• [something∗] [pressCoffee] ⟨getCoffee⟩ true:
If do something any number of times, and then
I press the coffee button, then
I will get my coffee – and that’s it.
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The language

Notes

• if there is only one modality in the signature (i.e., ACT is a singleton), write simply ♢ϕ

and �ϕ

• the language has some redundancy: in particular modal connectives are dual (as
quantifiers are in first-order logic): [α]ϕ is equivalent to ¬⟨α⟩ ¬ϕ

Example
Models as LTSs over Act.
ACT = Act (sets of actions)
⟨a⟩ϕ can be read as “it must observe a, and ϕ must hold after that.”
[a]ϕ can be read as “if it observes a, then ϕ must hold after that.”
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Semantics

M, s |= ϕ – what does it mean?

Model definition
A model for the language is a pair M = ⟨L,V ⟩, where

• L = ⟨S,ACT,−!⟩ is an LTS:
• S is a non-empty set of states (or points)
• ACT are the labels consisting of (structured) action

symbols (or modality symbols)
• −! ⊆ S × ACT × S is the transition relation

• V : PROP −! P(S) is a valuation.

When ACT = 1
• ♢ϕ and �ϕ instead of

⟨·⟩ϕ and [·]ϕ
• L = ⟨S,−!⟩ instead of

L = ⟨S,ACT,−!⟩
• −! ⊆ S × S instead of

−! ⊆ S × ACT × S
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Semantics

Safistaction: for a model M and a state s

M, s |= true
M, s ̸|= false
M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s ̸|= ϕ

M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2

M, s |= ϕ1 ! ϕ2 iff M, s ̸|= ϕ1 or M, s |= ϕ2

M, s |= ⟨α⟩ϕ iff there exists v ∈ S st s α
−! v and M, v |= ϕ

M, s |= [α]ϕ iff for all v ∈ S st s α
−! v and M, v |= ϕ
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Semantics

Satisfaction
A formula ϕ is

• satisfiable in a model M if it is satisfied at some point of M

• globally satisfied in M (M |= ϕ) if it is satisfied at all points in M

• valid (|= ϕ) if it is globally satisfied in all models

• a semantic consequence of a set of formulas Γ (Γ |= ϕ) if for all models M and all points
s, if M, s |= Γ then M, s |= ϕ
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Specific modal logic: Process logic

Process logic (Hennessy-Milner logic)

• PROP = ∅ (hence V = ∅)

• S = P is a set states in a labelled transition system, typically process terms

• structured actions are built by the grammar K := a ∈ Act | K + K

• the underlying LTS is given by L = ⟨P,Act, {⟨p, a, p′⟩ | a ∈ Act}⟩

Satisfaction is abbreviated as

p |= ⟨K ⟩ϕ iff ∃q∈{p′|p a
−!p′ ∧ a∈K} . q |= ϕ

p |= [K ]ϕ iff ∀q∈{p′|p a
−!p′ ∧ a∈K} . q |= ϕ
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Specific modal logic: Process logic

Process Logic Syntax (Hennessy-Milner Logic)

ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ! ϕ2 | ⟨K ⟩ϕ | [K ]ϕ

where K := a ∈ Act | K + K

S2 S3

S1

S4 S5

a

a

b

c
c

b

c

c

Ex. 4.2: Prove:

1. S1 |= [a + b + c] (⟨b + c⟩ true)

2. S2 |= [a] (⟨b⟩ true ∧ ⟨c⟩ true)

3. S1 ̸|= [a] (⟨b⟩ true ∧ ⟨c⟩ true)

4. S2 |= [b] [c] (⟨a⟩ true ∨ ⟨b⟩ true)

5. S1 |= [b] [c] (⟨a⟩ true ∨ ⟨b⟩ true)

6. S1 ̸|= [a + b] ⟨b + c⟩ (⟨a⟩ true)
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Other Modal Logics – Example II

(P, <) a strict partial order with infimum 0
I.e., P = {0, a, b, c, . . .},
a ! b means a < b,
a < b and b < c implies a < c
0 < x , for any x ̸= 0
there are no loops
some elements may not be comparable

• P, x |= �false if x is a maximal element of P

• P, 0 |= ♢ � false iff ...

• P, 0 |= �♢ � false iff ...
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Other Modal Logics – Example III

Temporal logic

• ⟨T , <⟩ where T is a set of time points (instants, execution states , ...) and < is the
earlier than relation on T .

• Thus, �φ (respectively, ♢φ) means that φ holds in all (respectively, some) time points.
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Other Modal Logics – Example IV

Epistemic logic (J. Hintikka, 1962)

• W is a set of agents

• α |= [Ki ] ϕ means that agent i always knows that ϕ is true.

• α |= ⟨Ki⟩ ϕ means that agent i can reach a state where he knows ϕ.

• α |= (¬[Ki ] ϕ) ∧ (¬[Ki ] ¬ϕ) means that agent i does not know whether ϕ is true or not.

Many variations exist, modelling knowledge and believes, knowledge of who knows what,
distributed knowledge, etc.
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Other Modal Logics – Example V

Deontic logic (G.H. von Wright, 1951)

• Obligations and permissions: must and can do.

• α |= � ϕ means ϕ is obligatory.

• α |= ♢ ϕ means ϕ is a possibility.

Each logic accepts a different set of principles or rules (with variations), that makes their
interpretation different.
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Exercise

Ex. 4.3: Express the properties in Process Logic

• inevitability of a:

• progress (can act):

• deadlock or termination (is stuck):

Ex. 4.4: What does this mean?

1. ⟨−⟩ false

2. [−] true

“−" stands for
∑

a∈Act a, and “−x” abbreviates
∑

a /∈Act a

Recall syntax

ϕ :: = true
| false
| ¬ϕ
| ϕ1 ∧ ϕ2

| ϕ1 ! ϕ2

| ⟨K ⟩ϕ
| [K ]ϕ

where K := a | K + K
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Express the following using Process Logic

Ex. 4.5: Coffee-machine

1. The user can have tea or coffee.
2. The user can have tea but not coffee.
3. The user can have tea after having 2 consecutive coffees.

Ex. 4.6: a’s and b’s

1. It is possible to do a after 3 b’s, but not more than 1 a.
2. It must be possible to do a after [doing a and then b].
3. After doing a and then b, it is not possible to do a.
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Express the following using Process Logic

Ex. 4.7: Taxi network

• ϕ0 = In a taxi network, a car can collect a passenger or be allocated by the Central to a
pending service

• ϕ1 = This applies only to cars already on-service

• ϕ2 = If a car is allocated to a service, it must first collect the passenger and then plan the
route

• ϕ3 = On detecting an emergency the taxi becomes inactive

• ϕ4 = A car on-service is not inactive
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Process Logic + regular expressions

Process Logic with regular expressions

ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ! ϕ2 | ⟨α⟩ϕ | [α]ϕ

where α ∈ ACT are structured actions over a set Act:

α := a ∈ Act | α;α | α+ α | α∗

More expressive than Process Logic. Used by mCRL2.
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Process Logic + regular expressions

Process Logic with regular expressions

ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ! ϕ2 | ⟨α⟩ϕ | [α]ϕ

where α ∈ ACT are structured actions over a set Act:

α := a ∈ Act | α;α | α+ α | α∗

Examples
• “⟨a; b; c⟩ true” means “⟨a⟩⟨b⟩⟨c⟩ true”
• “[a; b; c] false” means “[a][b][c] false”
• “⟨a∗; b⟩ true” means that b can be taken after some number of a’s.
• “⟨−∗; a⟩ true” means that a can eventually be taken
• “[−∗]⟨a + b⟩ true” means it is always possible to do a or b
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Exercises

Ex. 4.8: What does this mean?
• ⟨−∗; serve!⟩ true
• [−∗; (addChoc + addMilk); serve!] false
• [−∗; addCoffee] ⟨serve!⟩ true

• ⟨−⟩ true
• [−∗] ⟨−⟩ true
• [−∗; a] ⟨b⟩ true
• [−∗; send ] ⟨(−send)∗; recv⟩ true
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Exercises

Ex. 4.9: Express using logic
1. The user can only have coffee after the coffee

button is pressed.
2. The used must have coffee after the coffee button

is pressed.
3. It is always possible to turn off the coffee machine.
4. It is always possible to reach a state where the

coffee machine can be turned off.
5. It is never possible to add chocolate right after

pressing the latte button.
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mCRL2 Tools
Slides 3:

https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf
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Bisimulation and modal equivalence



Bisimulation (of models)

Definition
Given two models M = ⟨L,V ⟩ and M′ = ⟨L′,V ′⟩, a bisimulation of L and L′ is also
a bisimulation of M and M′ if,

whenever s R s ′, then V (s) = V ′(s ′)
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Invariance and definability

Lemma (invariance: bisimulation implies modal equivalence)
Given two models M and M′, and a bisimulation R between their states:

if two states s, s ′ are related by R (i.e. sRs ′),
then s, s ′ satisfy the same basic modal formulas.

(i.e., for all ϕ: M, s |= ϕ ⇔ M′, s ′ |= ϕ)

Hence
Given 2 models M and M′, if you can find ϕ such that

M |= ϕ and M′ ̸|= ϕ

(or vice-versa) then they are NOT bisimilar.
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Exercise

Ex. 4.10: Bisimilarity and modal equivalence
Consider the following transition systems:

5

1
��

// 2 3

OO

��

(( 4hh

6

Give a modal formula that can be satisfied at point 1 but not at 3.
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Exercise

Ex. 4.11: Find distinguishing modal formula

1) p0 p1

coin

coffee

q0 q1

coin

coffee

tea

2) p0
p1 p2

p3

a
a

b
q0 q1 q2a b

3) p0
p1 p2

p3 p4

a
a

b

c
q0 q1

q2

q3
a b

c
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Richer modal logics



Richer modal logics

can be obtained in different ways, e.g.

• axiomatic extensions

• introducing more complex satisfaction relations

• support novel semantic capabilities

• ...

Examples

• richer temporal logics

• hybrid logic

• modal µ-calculus
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Temporal Logics with U and S

Until and Since

M, s |= ϕU ψ iff there exists r st s ≤ r and M, r |= ψ, and
for all t st s ≤ t < r , one has M, t |= ϕ

M, s |= ϕS ψ iff there exists r st r ≤ s and M, r |= ψ, and
for all t st r < t ≤ s, one has M, t |= ϕ

• Defined for temporal frames ⟨T , <⟩ (transitive, asymmetric).
• note the ∃ ∀ qualification pattern: these operators are neither diamonds nor boxes.
• More general definition for other frames – it becomes more expressive than modal

logics.
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Exercise

Temporal logics - rewrite using U
• ♢ψ =
• �ψ =
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Exercise

Temporal logics - rewrite using U
• ♢ψ = tt U ψ

• �ψ =
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Exercise

Temporal logics - rewrite using U
• ♢ψ = tt U ψ

• �ψ = ¬(♢¬ψ) = ¬(tt U ¬ψ)
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Linear temporal logic (LTL)

ϕ := true | p | ϕ1 ∧ ϕ2 | ¬ϕ | ⃝ϕ | ϕ1 U ϕ2

mutual exclusion �(¬c1 ∨ ¬c2)
liveness �♢c1 ∧ �♢c2

starvation freedom (�♢w1 ! �♢c1) ∧ (�♢w1 ! �♢c1)
progress �(w1 ! ♢c1)
weak fairness ♢�w1 ! �♢c1

eventually forever ♢�w1

• First temporal logic to reason about reactive systems [Pnueli, 1977]

• Formulas are interpreted over execution paths

• Express linear-time properties
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Computational tree logic (CTL, CTL*)

state formulas to express properties of a state:

Φ := true | Φ ∧ Φ | ¬Φ | ∃ψ | ∀ψ

path formulas to express properties of a path:

ψ := ⃝Φ | Φ U Ψ

mutual exclusion ∀ � (¬c1 ∨ ¬c2)
liveness ∀ � ∀♢c1 ∧ ∀ � ∀♢c2

order ∀ � (c1 ∨ ∀ ⃝ c2)

• Branching time structure encode transitive, irreflexive but not necessarily linear flows of
time

• flows are trees: past linear; branching future
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Hybrid logic

Motivation
Add the possibility of naming points and reason about their identity

Compare:
♢(r ∧ p) ∧ ♢(r ∧ q) ! ♢(p ∧ q)

with
♢(i ∧ p) ∧ ♢(i ∧ q) ! ♢(p ∧ q)

for i ∈ NOM (a nominal)

Syntax

ϕ ::= . . . | p | ⟨α⟩ϕ | [α]ϕ | i | @i ϕ

where p ∈ PROP and α ∈ ACT and i ∈ NOM
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Hybrid logic

Nominals i

• Are special propositional symbols that hold exactly on one state (the state they name)

• In a model the valuation V is extended from

V : PROP −! P(S)

to
V : PROP −! P(S) and V : NOM −! S

where NOM is the set of nominals in the model

• Satisfaction:

M, s |= i iff s = V (i)
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Hybrid logic

The @i operator

M, s |= true
M, s ̸|= false
M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s ̸|= ϕ

M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2

M, s |= ϕ1 ! ϕ2 iff M, s ̸|= ϕ1 or M, s |= ϕ2

M, s |= ⟨α⟩ϕ iff there exists v ∈ S st s α
−! v and M, v |= ϕ

M, s |= [α]ϕ iff for all v ∈ S st s α
−! v and M, v |= ϕ

M, s |= @iϕ iff M, u |= ϕ and u = V (i)
[u is the state denoted by i ]
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Hybrid logic

Summing up

• basic hybrid logic is a simple notation for capturing the bisimulation-invariant fragment of
first-order logic with constants and equality, i.e., a mechanism for equality reasoning in
propositional modal logic.

• comes cheap: up to a polynomial, the complexity of the resulting decision problem is no
worse than for the basic modal language
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