2. Transition Systems

José Proença System Verification (CC4084) 2024/2025

CISTER - U.Porto, Porto, Portugal

https://fm-dcc.github.io/sv2425

Syllabus

- Introduction to model-checking
- CCS: a simple language for concurrency
 - Syntax
 - Semantics
 - Equivalence
 - mCRL2: modelling
- Dynamic logic
 - Syntax
 - Semantics
 - Relation with equivalence
 - mCRL2: verification

- Timed Automata
 - Syntax
 - Semantics (composition, Zeno)
 - Equivalence
 - UPPAAL: modelling
- Temporal logics (LTL/CTL)
 - Syntax
 - Semantics
 - UPPAAL: verification
- Probabilistic and stochastic systems
 - Going probabilistic
 - UPPAAL: monte-carlo

Why transition systems?

A Sprinkle of Linguistics

During the module we will encounter two linguistic concepts that every programmer should know:

- syntax the rules used for determining whether a sentence is valid (in a language) or not
- semantics the meaning of valid sentences

Ex. 2.1: Syntax

The sentence/program $\mathbf{x}:=\mathbf{p}\,;\mathbf{q}$ is forbidden by the syntactic rules of most programming languages

Ex. 2.2: Semantics

The sentence/program $\mathtt{x}:=\mathtt{1}$ has the meaning "writes 1 in the memory address corresponding to $\mathtt{x}"$

System Verification 2024/25 @ FCUP

FC

How can one prove that a program does what is supposed to do if its semantics (i.e. its meaning) is not established *a priori* ?

Ex. 2.3: What is the end result of running x := 2; (x := x + 1 || x := 0)?

parallelism operator

Ex. 2.4: Value of y? int x = 0; $int f(){x++; return x;}$ $int g(){x--; return x;}$ int y = f()+g();

Widely used programming languages still lacks a formal semantics

System Verification 2024/25 @ FCUP

Defining Transition System with Functors

Definition (Functor)

A functor F sends a set X into a new set FX and a function $f : X \to Y$ into a new function $Ff : FX \to FY$ such that

$$F(id) = id$$
 $F(g \cdot f) = Fg \cdot Ff$

Fix a set A. The following two functors then naturally arise

• product - $X \mapsto A \times X$, $f \mapsto id \times f$

• exponential -
$$X \mapsto X^A$$
, $f \mapsto (g \mapsto f \cdot g)$

The list functor -
$$[X] \mapsto X^*$$
, $[f] \mapsto \operatorname{map} f$

applies f to every element of a given list

$$P(X) \mapsto ?$$
 , $P(f) \mapsto ?$

The list functor -
$$[X] \mapsto X^*$$
, $[f] \mapsto \operatorname{map} f$

applies f to every element of a given list

 $P(X) \mapsto \{A \mid A \subseteq X\}, \quad P(f) \mapsto ?$

The list functor -
$$[X] \mapsto X^*$$
, $[f] \mapsto \operatorname{map} f$

applies f to every element of a given list

 $\mathbb{P}(X) \mapsto \{A \mid A \subseteq X\}, \qquad \mathbb{P}(f) \mapsto (A \mapsto \{f(a) \mid a \in A\})$

The list functor -
$$[X] \mapsto X^*$$
, $[f] \mapsto \operatorname{map} f$

applies f to every element of a given list

 $\mathbb{P}(X) \mapsto \{A \mid A \subseteq X\}, \qquad \mathbb{P}(f) \mapsto (A \mapsto \{f(a) \mid a \in A\})$

Ex.2.5: Powerset on Booleans $P(Bool) \mapsto P(not) \mapsto$

System Verification 2024/25 @ FCUP

The list functor -
$$[X] \mapsto X^*$$
, $[f] \mapsto \operatorname{map} f$

applies f to every element of a given list

 $\mathbb{P}(X) \mapsto \{A \mid A \subseteq X\}, \qquad \mathbb{P}(f) \mapsto (A \mapsto \{f(a) \mid a \in A\})$

```
Ex. 2.5: Powerset on Booleans

P(Bool) \mapsto \{\emptyset, \{\top\}, \{\bot\}, \{\top, \bot\}\}

P(not) \mapsto Bools \mapsto \{not(b) \mid b \in Bools\}
```

FC

Definition (Transition system)

Let F be a functor. An F-transition system is a map $X \to FX$

Some famous examples of F-transition systems

- Moore machine $X \rightarrow N \times X$
- Deterministic automata $X \rightarrow \texttt{Bool} \times X^N$
- Non-deterministic automata $X o { t Bool} imes {
 m P}(X)^N$
- Markov chain $X \to \mathrm{D}(X)$

Powerset functor

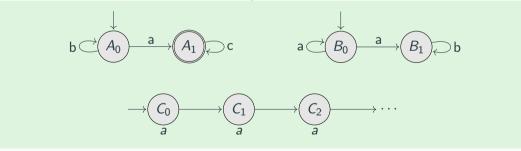
System Verification 2024/25 @ FCUP

Exercise

Recall functors

$$X\mapsto A imes X$$
 $X\mapsto \mathrm{P}(X)$ $X\mapsto X^A$ $X\mapsto \mathrm{D}(X)$

Ex. 2.6: Formalise as an F-transition system



Indeed the idea of working at the level of

Functors as Transition Types

is a very fruitful one; and which we only barely grasped —

in essence, it provides a universal theory of transition systems that can be instantiated to most kinds of transition system we will encounter in our life

CCS Process algebra

Sequential CCS - Syntax

$$\mathcal{P} \ni \mathcal{P}, \mathcal{Q} ::= \mathcal{K} \mid \alpha.\mathcal{P} \mid \mathcal{P} + \mathcal{Q} \mid \mathbf{0} \mid \mathcal{P}[f] \mid \mathcal{P} \setminus \mathcal{L} \mid \mathcal{P}|\mathcal{Q}$$

where

- $\alpha \in \mathbf{N} \cup \{\tau\}$ is an action
- K s a collection of process names or process constants
- $L \subseteq N$ is a set of labels
- f is a function that renames actions s.t. f(au) = au
- notation:

$$[f] = [a_1 \mapsto b_1, \ldots, a_n \mapsto b_n]$$

Syntax

$$\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P|Q$$

Ex. 2.7: Which are NOT syntactically correct? Why?

a.b.A + B	(1)	a.(a+b).A	(6)
$(a.0+b.A) \setminus \{a,b,c\}$	(2)	$(a.B+b.B)[a\mapsto a, au\mapsto b]$	(7)
$(a.0+b.A) \setminus \{a, \tau\}$	(3)	$(a.B+ au.B)[b\mapsto a,a\mapsto a]$	(8)
$a.B + [b \mapsto a]$	(4)	(a.b.A + b. 0).B	(9)
au. au.B + 0	(5)	(a.b.A+b. 0)+B	(10)

Every *P* yields a transition system $X \rightarrow ???$ with transitions prescribed by the rules below.

$$(act) \qquad (sum-1) \qquad (sum-2) \\ \hline P_1 \xrightarrow{\alpha} P' \qquad P_1 \xrightarrow{\alpha} P'_1 \qquad P_2 \xrightarrow{\alpha} P'_2 \\ \hline P_1 + P_2 \xrightarrow{\alpha} P'_1 \qquad P_2 \xrightarrow{\alpha} P'_2 \\ \hline P_1 + P_2 \xrightarrow{\alpha} P'_1 \qquad P'_1 \qquad P_1 + P_2 \xrightarrow{\alpha} P'_2 \\ \hline (res) \qquad (res) \qquad (rel) \\ \hline P \xrightarrow{\alpha} P' \\ \hline P \setminus L \xrightarrow{\alpha} P' \setminus L \qquad \alpha \notin L \qquad P[f] \xrightarrow{f(\alpha)} P'[f]$$

- Initial states: the process being translated
- Final states: all states are final
- Language: possible sequences of actions of a process

Every *P* yields a transition system $X \rightarrow ???$ with transitions prescribed by the rules below.

$$\begin{array}{c} (\operatorname{act}) & (\operatorname{sum-1}) & (\operatorname{sum-2}) \\ \hline P_1 \xrightarrow{\alpha} P' & \hline P_1 \xrightarrow{\alpha} P'_1 & P_2 \xrightarrow{\alpha} P'_2 \\ \hline \hline P_1 + P_2 \xrightarrow{\alpha} P'_1 & P_2 \xrightarrow{\alpha} P'_2 \\ \hline \hline P_1 + P_2 \xrightarrow{\alpha} P'_1 & P'_2 & \hline \hline P_1 + P_2 \xrightarrow{\alpha} P'_2 \\ \hline \hline P_1 + P_2 \xrightarrow{\alpha} P'_2 \hline \hline P_1 + P_2 \xrightarrow{\alpha} P'_2 \\ \hline \hline P_1 + P_2 \xrightarrow{\alpha} P'_2 \hline \hline \hline P_1 + P_2 \xrightarrow{\alpha} P'_2 \hline \hline P_1 + P_2 \xrightarrow{\alpha} P'_2 \hline \hline P_1 + P_2 \hline \hline P_1 + P_2 \hline \hline P_1 + P_2 \hline \hline \hline P_1 + P_2 \hline \hline P_1 \hline \hline P_1 \hline \hline P_1 \hline \hline P_1 \hline \hline$$

Ex. 2.8: Build a derivation tree to prove the transitions below 1. $(a.A + b.B) \xrightarrow{b} B$ 2. $(a.b.A + (b.a.B + c.a.C)) \xrightarrow{b} a.B$

3. $((a.B+b.A)[a \mapsto c]) \setminus \{a, b\} \xrightarrow{c} (B[a \mapsto c]) \setminus \{a, b\}$

Exercise

Ex. 2.9: Draw the automata

CM = coin.coffee.CMCS = pub.(coin.coffee.CS + coin.tea.CS)

Ex. 2.10: What is the language of the process A?

A = goLeft.A + goRight.BB = rest.0

Check result online: http://lmf.di.uminho.pt/ccs-caos

System Verification 2024/25 @ FCUP

Ex. 2.11: Write the process of the flowchart above

- P = powerOn.Q
- Q = selMocha.addChocolate.Mk + selLatte.Mk + ...
- Mk = addMilk...

Concurrent Process algebra

Overview

Recall

- 1. Non-deterministic Finite Automata $(X \to \text{Bool} \times P(X)^N)$: $\to q_1 \longrightarrow q_2 \gtrsim b$
- 2. (Sequential) Process algebra: P = a.Q Q = b.Q
- 3. Meaning of (2) using (1)

Still missing

- Interaction between processes
- Enrich (2) and (3)

CCS - Updated Syntax

$$\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P|Q$$

where

- $\alpha \in \mathbb{N} \cup \overline{\mathbb{N}} \cup \{\tau\}$ is an action
- K s a collection of process names or process constants
- $L \subseteq N$ is a set of labels
- f is a function that renames actions s.t. $f(\tau) = \tau$ and $f(\overline{a}) = \overline{f(a)}$
- notation:

$$[f] = [a_1 \mapsto b_1, \dots, a_n \mapsto b_n] \quad \text{where } a_i, b_i \in \mathsf{N} \cup \{\tau\}$$

Syntax

$\mathcal{P} \ni \mathcal{P}, \mathcal{Q} ::= \mathcal{K} \mid \alpha.\mathcal{P} \mid \mathcal{P} + \mathcal{Q} \mid \mathbf{0} \mid \mathcal{P}[f] \mid \mathcal{P} \setminus \mathcal{L} \mid \mathcal{P}|\mathcal{Q}$

Ex. 2.12: Which are syntactically correct?

$a.\overline{b}.A+B$	(11)	$(a.B+b.B)[a\mapsto a, au\mapsto b]$	(17)
$(a.0+\overline{a}.A)ackslash\{\overline{a},b\}$	(12)	$(a.B+ au.B)[b\mapsto a,b\mapsto a]$	(18)
$(a.0+\overline{a}.A)ackslash\{a, au\}$	(13)	$(a.B+b.B)[a\mapsto b,b\mapsto \overline{a}]$	(19)
$(a.0+\overline{ au}.A)ackslash\{a\}$	(14)	$(a.b.A + \overline{a}.0) B$	(20)
$ au$. $ au$. $B + \overline{a}$. 0	(15)	$(a.b.A + \overline{a}.0).B$	(21)
(0 0)+ 0	(16)	$(a.b.A + \overline{a}.0) + B$	(22)

CCS semantics - building an NFA

(act)	(sum-1) $P_1 \xrightarrow{\alpha} P_1'$	(sum-2) $P_2 \xrightarrow{\alpha} P'_2$
$\alpha.P \xrightarrow{\alpha} P$	$\begin{array}{c} P_1 + P_2 \xrightarrow{\alpha} P_1' \end{array}$	$\begin{array}{c} P_1 + P_2 \xrightarrow{\alpha} P_2' \end{array}$
$(res) \\ P \xrightarrow{\alpha} P'$	a = d	(rel) $P \xrightarrow{\alpha} P'$
$\frac{P \xrightarrow{\alpha} P'}{P \setminus L \xrightarrow{\alpha} P' \setminus L} \alpha, \overline{\alpha} \notin L$		$\frac{P[f] \xrightarrow{f(\alpha)} P'[f]}{P[f] \xrightarrow{f(\alpha)} P'[f]}$
(com1)	(com2)	(com3)
$P \xrightarrow{\alpha} P'$	$Q \xrightarrow{lpha} Q'$	$P \xrightarrow{a} P' Q \xrightarrow{\overline{a}} Q'$
$P Q \xrightarrow{lpha} P' Q$	$P Q \xrightarrow{lpha} P Q'$	$P Q \xrightarrow{ au} P' Q'$

CCS semantics - building an NFA

(act)	(sum-1) $P_1 \xrightarrow{\alpha} P_1'$	(sum-2) $P_2 \xrightarrow{\alpha} P'_2$
$\alpha.P \xrightarrow{\alpha} P$	$\frac{P_1 + P_2 \xrightarrow{\alpha} P_1'}{P_1 + P_2 \xrightarrow{\alpha} P_1'}$	$P_1 + P_2 \xrightarrow{\alpha} P'_2$
(res) $P \xrightarrow{\alpha} P'$ $P \setminus L \xrightarrow{\alpha} P' \setminus$	$\underline{\alpha}, \overline{\alpha} \notin L$	(rel) $P \xrightarrow{\alpha} P'$ $P[f] \xrightarrow{f(\alpha)} P'[f]$
$(com1)$ $P \xrightarrow{\alpha} P'$	$(ext{com2})$ $Q \xrightarrow{lpha} Q'$	(com3) $P \xrightarrow{a} P' Q \xrightarrow{\overline{a}} Q'$
$P Q \xrightarrow{lpha} P' Q$	$P Q \xrightarrow{lpha} P Q'$	$P Q \xrightarrow{ au} P' Q'$

Ex. 2.13: Draw the transition systems

CM = coin.coffee.CMCS = pub.coin.coffee.CS

 $SmUni = (CM|CS) \setminus \{coin, coffee\}$

System Verification 2024/25 @ FCUP

Concurrent Process algebra

Ex. 2.14: Let A = b.a.B. Show that:

- 1. $(A \mid \overline{b}.\mathbf{0}) \setminus \{b\} \xrightarrow{\tau} (a.B \mid \mathbf{0}) \setminus \{b\}$
- 2. $(A \mid b.a.B) + ((b.A)[b \mapsto a]) \xrightarrow{a} A[b \mapsto a]$

Ex. 2.15: Draw the NFAs A and D

A = x.B + x.x.C	D = x.x.x.D + x.E
B = x.x.A + y.C	E = x.F + y.F
C = x.A	F = x.D

mCRL2 Tools – generate automata

Slides 3: https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf

System Verification 2024/25 @ FCUP

Concurrent Process algebra

Observational Equivalence

Overview

Recall

1. F-transition systems, e.g., Non-deterministic Finite Automata: $\rightarrow q_1$ $\xrightarrow{a} q_2$ $\rightarrow b$

- 2. Process algebra: P = a.Q Q = b.Q P|Q
- 3. Interaction between processes
- 4. Meaning of CCS using transition systems

Still missing

- When is a process *P* equivalent to a process *Q*?
- When can a process *P* be safely replaced by a process *Q*?

Two programs are observationally equivalent if it is impossible to observe any difference in their behaviour

Here behaviour is described in terms of transition systems

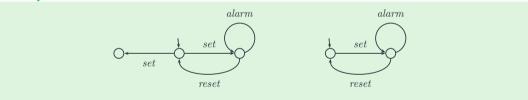
... and therefore behaviour/equivalence needs to be pinned down to them

EQ1 – Language equivalence

Definition

```
Two automata A, B are language equivalent iff L_A = L_B
(i.e. if they can perform the same finite sequences of transitions)
```

Example

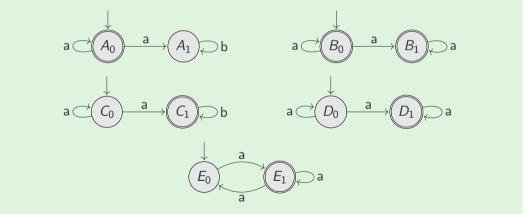


Language equivalence applies when one can neither interact with a system, nor distinguish a slow system from one that has come to a stand still.

System Verification 2024/25 @ FCUP

Exercise

Ex. 2.16: Find pairs of automata with the same language



Ex. 2.17: Check if the processes are language equivalent

$$P = coin.(\overline{coffee}.P + \overline{tea}.P)$$
 $Q = coin.\overline{coffee}.Q + coin.\overline{tea}.Q$

EQ2 – Similarity

the quest for a behavioural equality: able to identify states that cannot be distinguished by any realistic form of observation

Simulation

A state q simulates another state p if every transition from q is corresponded by a transition from p and this capacity is kept along the whole life of the system to which state space q belongs to.

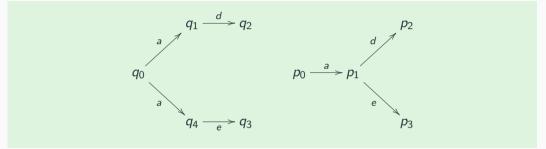
Definition

Given NFA A_1 and A_2 over N with states S_1 and S_2 respectively, a relation $R \subseteq S_1 \times S_2$ is a simulation iff, for all $\langle p, q \rangle \in R$ and $a \in N$,

(1)
$$p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_{2} q' \land \langle p', q' \rangle \in R \rangle$$

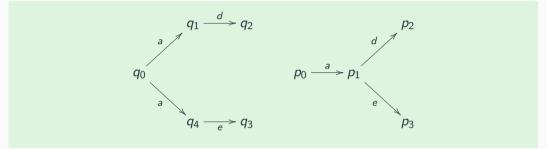
Example

Ex. 2.18: Find simulations



Example

Ex. 2.18: Find simulations



$$q_0 \lesssim p_0$$
 cf. $\{\langle q_0, p_0 \rangle, \langle q_1, p_1 \rangle, \langle q_4, p_1 \rangle, \ldots\}$

System Verification 2024/25 @ FCUP

EQ2 - Similarity

Definition

 $p \lesssim q \equiv \langle \exists R :: R \text{ is a simulation and } \langle p, q \rangle \in R \rangle$

We say p is simulated by q.

Lemma

The similarity relation is a preorder (ie, reflexive and transitive)

EQ3 – Bisimilarity

Bisimulation

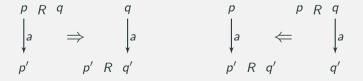
Definition

Given NFA A_1 and A_2 over N with states S_1 and S_2 respectively, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff both R and its converse R° are simulations.

I.e., whenever $\langle p,q\rangle\in R$ and $a\in N$,

(1)
$$p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_{2} q' \land \langle p', q' \rangle \in R \rangle$$

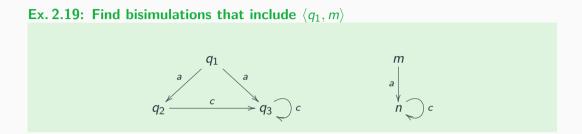
(2) $q \xrightarrow{a}_{2} q' \Rightarrow \langle \exists p' : p' \in S_1 : p \xrightarrow{a}_{1} p' \land \langle p', q' \rangle \in R \rangle$



System Verification 2024/25 @ FCUP

EQ3 - Bisimilarity

Examples



Ex. 2.20: Find bisimulations that include $\langle q_1, h \rangle$

$$q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \xrightarrow{a} \cdots$$

h́)a

Definition

$$p \sim q \equiv \langle \exists R :: R \text{ is a bisimulation and } \langle p, q \rangle \in R \rangle$$

We say p is bisimilar to q.

Lemma

Two processes P and Q are bisimilar if there is a bisimulation that includes $\langle P, Q \rangle$.

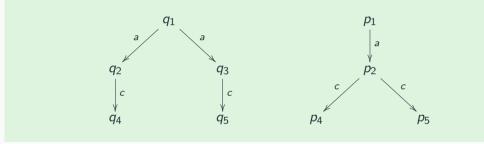
Lemma

The bisimilarity relation is an equivalence relation

(ie, symmetric, reflexive and transitive)

Exercises

Ex. 2.21: Check if there is a bisimulation that include $\langle q_1, p_1 \rangle$

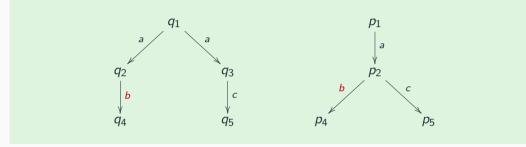


Ex. 2.22: Check if there is a bisimulation that include $\langle P, Q \rangle$

$$P = coin.(\overline{coffee}.P + \overline{tea}.P)$$
 $Q = coin.\overline{coffee}.Q + coin.\overline{tea}.Q$

Exercises

Ex. 2.23: Check if there is a bisimulation that include $\langle q_1, p_1 \rangle$



Ex. 2.24: Check if, for any process P

$$P \sim P + \mathbf{0}$$

mCRL2 Tools - check bisimilarity

Slides 3: https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf Generalising Observational Equivalences

FC

Definition

Fix a functor F and consider two transition systems $f : X \to FX$ and $g : Y \to FY$. Two states $x \in X$, $y \in Y$ are observationally equivalent if

- there exists a relation $R \subseteq X \times Y$ with $(x, y) \in R$ and
- there exists a transition system $b: R \rightarrow FR$ such that the diagram below commutes



If such is the case we write $x \sim y$

System Verification 2024/25 @ FCUP

Generalising Observational Equivalences

Given $\langle o_1, n_1 \rangle : X \to A \times X$ and $\langle o_2, n_2 \rangle : Y \to A \times Y$ we obtain from the previous slide that $x \sim y$ iff

- $o_1(x) = o_2(y)$
- $n_1(x) \sim n_2(y)$

Recall that we used systems of type $X \to P(X)^N$ for establishing the semantics of CCS processes. This means that ...

notions of observational behaviour/equivalence for such transition systems directly impact our concurrent language

Given $\overline{t_1}: X \to \mathrm{P}(X)^N$ and $\overline{t_2}: Y \to \mathrm{P}(Y)^N$, $x \sim y$ iff for all $I \in N$

•
$$\forall x' \in t_1(x, n). \ \exists y' \in t_2(y, n). \ x' \sim y'$$

•
$$\forall y' \in t_2(y, n). \ \exists x' \in t_1(x, n). \ x' \sim y'$$