2. Transition Systems

José Proenca
System Verification (CC4084) 2024 /2025

CISTER - U.Porto, Porto, Portugal https://fm-dcc.github.io/sv2425

[MPORTO oy g s e

E FACULDADE DE CIENCIAS Computing Systems
C UNIVERSIDADE DO PORTO

https://fm-dcc.github.io/sv2425

Syllabus

Introduction to model-checking

CCS: a simple language for
concurrency

= Syntax

= Semantics

= Equivalence
= mCRL2: modelling

Dynamic logic
= Syntax
= Semantics
= Relation with equivalence
= mCRL2: verification

System Verification 2024 /25 @ FCUP

= Timed Automata

= Syntax

= Semantics (composition, Zeno)

= Equivalence
= UPPAAL: modelling

= Temporal logics (LTL/CTL)
= Syntax

= Semantics
= UPPAAL: verification

ic

= Probabilistic and stochastic systems

= Going probabilistic
= UPPAAL: monte-carlo

38

Why transition systems?

A Sprinkle of Linguistics g

During the module we will encounter two linguistic concepts that every programmer
should know:

= syntax - the rules used for determining whether a sentence is valid (in a language)
or not

= semantics - the meaning of valid sentences

Ex.2.1: Syntax
The sentence/program x := p; q is forbidden by the syntactic rules of most

programming languages

Ex. 2.2: Semantics
The sentence/program x := 1 has the meaning "“writes 1 in the memory address
corresponding to x"

System Verification 2024 /25 @ FCUP Why transition systems? 3

38

The need for Semantics in Formal Analysis

How can one prove that a program does what is supposed to do if its semantics (i.e.
its meaning) is not established a priori ?

Ex. 2.3:
What is the end result of running x :=2 ;(x :=x+1| x:=0) ?

|

parallelism operator

Ex. 2.4: Value of y?
int x =0 int f(){x++ return x; } int g(){x-=;return x;} inty ="1()+g();

Widely used programming languages still lacks a formal semantics

System Verification 2024 /25 @ FCUP Why transition systems?

ic

38

Defining Transition System with
Functors

Preliminaries pt. | FC

Definition (Functor)
A functor F sends a set X into a new set FX and a function f : X — Y into a new

function Ff : FX — FY such that

F(id) = id F(g-f)=Fg-Ff

Fix a set A. The following two functors then naturally arise

= product - X — Ax X, f—id xf
= exponential - X — XA, f = (g f-g)

System Verification 2024 /25 @ FCUP Defining Transition System with Functors

Preliminaries pt. Il - the List and Powerset functors FC

The list functor - [X] — X*, [f] — map f

|

applies f to every element of a given list

The powerset functor - almost like the list functor; the difference is that we do not
look at the order in which elements appear and how many times they repeat. Formally,

P(X) — 7 . P(f) e 7

System Verification 2024 /25 @ FCUP Defining Transition System with Functors 6

38

Preliminaries pt. Il - the List and Powerset functors FC

The list functor - [X] — X*, [f] — map f

|

applies f to every element of a given list

The powerset functor - almost like the list functor; the difference is that we do not
look at the order in which elements appear and how many times they repeat. Formally,

P(X)— {A]| AC X}, P(f)— 7

System Verification 2024 /25 @ FCUP Defining Transition System with Functors 6

38

Preliminaries pt. Il - the List and Powerset functors FC

The list functor - [X] — X*, [f] — map f

|

applies f to every element of a given list

The powerset functor - almost like the list functor; the difference is that we do not
look at the order in which elements appear and how many times they repeat. Formally,

P(X)— {A| AC X}, P(f)— (A {f(a) | a€ A})

System Verification 2024 /25 @ FCUP Defining Transition System with Functors 6

Preliminaries pt. Il - the List and Powerset functors FC

The list functor - [X] — X*, [f] — map f

|

applies f to every element of a given list

The powerset functor - almost like the list functor; the difference is that we do not
look at the order in which elements appear and how many times they repeat. Formally,

P(X)— {A| AC X}, P(f)— (A {f(a) | a€ A})

Ex. 2.5: Powerset on Booleans
P(Bool) —
P(not) —

System Verification 2024 /25 @ FCUP Defining Transition System with Functors 6

Preliminaries pt. Il - the List and Powerset functors FC

The list functor - [X] — X*, [f] — map f

|

applies f to every element of a given list

The powerset functor - almost like the list functor; the difference is that we do not
look at the order in which elements appear and how many times they repeat. Formally,

P(X)— {A| AC X}, P(f)— (A {f(a) | a€ A})

Ex. 2.5: Powerset on Booleans
P(Bool) — {0, {T}, {L},{T, L}
P(not) — Bools — {not(b) | b € Bools}

System Verification 2024 /25 @ FCUP Defining Transition System with Functors 6

A (Generalised) Notion of a Transition System

Definition (Transition system)
Let F be a functor. An F-transition system is a map X — FX

Some famous examples of F-transition systems

= Moore machine- X — N x X
» Deterministic automata - X — Bool x XN
= Non-deterministic automata - X — Bool x P(X)V

= Markov chain - X — D(X) ¢

¢ Powerset functor

Distribution functor

System Verification 2024 /25 @ FCUP Defining Transition System with Functors

Exercise

Recall functors
X—AxX X—=PX) X—=X4 X~—D(X)

Ex. 2.6: Formalise as an F-transition system

! !
-@—@—@

System Verification 2024 /25 @ FCUP Defining Transition System with Functors

38

Our First encounter with Coalgebra FC

Indeed the idea of working at the level of
Functors as Transition Types

is a very fruitful one; and which we only barely grasped —

in essence, it provides a universal theory of transition systems that can be instantiated
to most kinds of transition system we will encounter in our life

System Verification 2024 /25 @ FCUP Defining Transition System with Functors 9

38

CCS Process algebra

CCS Process algebra

Sequential CCS - Syntax
P>5PQ:=K|aP | P+Q |0

where
-a € NU{r} is an action
- K s a collection of process names or process constants
- L C N is a set of labels
- f is a function that renames actions s.t. f(7) =17
- notation:
[f] =[a1— b1,...,a, — by

System Verification 2024 /25 @ FCUP

| PIf] | P\L

CCS Process algebra

CCS Process algebra FC

Syntax

P>PQ:=K|aP | P+Q | 0| Pf] | P\L

Ex.2.7: Which are NOT syntactically correct? Why?

a.b.A+ B (1) a.(a+b).A (6)
(a.0 + b.A)\{a,b,c} (2) (a.B+ b.B)[ar a,T — b] (7)
(a.0 + b.A)\{a, 7} (3) (a.B+7.B)[b— a,a a] (8)
a.B+[b+ a (4) (a.b.A+b.0).B 9)
T.7.B+0 (5) (a.b.A+b.0)+ B (10)

System Verification 2024 /25 @ FCUP CCS Process algebra 11 / 38

CCS semantics - building a transition system

Every P yields a transition system X — 777 with transitions prescribed by the rules below.

(sum-1) (sum-2)
(act)
P 2 Pl P, 2 P
Oz.Pi)P P1+P2i>P{ P1+P21>P§
(res) (rel)
PSP adl PP
P\L 2 P\L Pi] 2, prif]

= |nitial states: the process being translated
= Final states: all states are final

= lLanguage: possible sequences of actions of a process

System Verification 2024 /25 @ FCUP CCS Process algebra

38

http://lmf.di.uminho.pt/ccs-caos/?(a.A + b.B)
http://lmf.di.uminho.pt/ccs-caos/?(a.b.A + (b.a.B + c.a.C))

CCS semantics - building a transition system

Every P yields a transition system X — 777 with transitions prescribed by the rules below.

(sum-1) (sum-2)
(act)
P2 P P, 2 P
a.P = P Pyt Py % P P4 Py P
(res) (rel)
PSP a¢l PP
P\L 2 P\L Pi] 2, prif]

Ex. 2.8: Build a derivation tree to prove the transitions below

1. (2aA+bB) & B

2. (a.bA+ (b.aB+caC)) 2 aB
3. ((a.B+ b.A)[a+ c])\{a,b} = (Bla— c])\{a, b}

System Verification 2024 /25 @ FCUP CCS Process algebra

ic

38

http://lmf.di.uminho.pt/ccs-caos/?(a.A + b.B)
http://lmf.di.uminho.pt/ccs-caos/?(a.b.A + (b.a.B + c.a.C))

Exercise
Ex. 2.9: Draw the automata

CM = coin.coffee. CM
CS = pub.(coin.coffee.CS + coin.tea.CS)
Ex. 2.10: What is the language of the process A?
A = goleft.A + goRight.B

B = rest.0

Check result online: http://1mf.di.uminho.pt/ccs-caos

System Verification 2024 /25 @ FCUP CCS Process algebra

13 / 38

http://lmf.di.uminho.pt/ccs-caos

Exercise

ﬁispre&—\
"”_____—Latle—________‘A

Add Coffee ———
Start —p Power on ——p Which coffee?

Power off? :—— Power off —p End
Tﬂd Chocotate |——

Ex.2.11: Write the process of the flowchart above
P = powerOn.Q

@ = selMocha.addChocolate. Mk + selLatte. Mk -+ . ..
Mk = addMilk. ..

Add Milk ——7

System Verification 2024 /25 @ FCUP

CCS Process algebra 14

ic

38

Concurrent Process algebra

Overview

Recall
1. Non-deterministic Finite Automata (X — x P(X)N):
—(@)— (e
2. (Sequential) Process algebra: P =a.Q Q= b.Q
3. Meaning of (2) using (1)

Still missing
» Interaction between processes

= Enrich (2) and (3)

System Verification 2024 /25 @ FCUP Concurrent Process algebra

15 / 38

Process algebras

CCS - Updated Syntax
P>PQRQ:=K|aP | P+Q | 0|

where

-a € NUNU{r} is an action

- K s a collection of process names or process constants
- L C N is a set of labels

P[f]

| PAL | PI@

- f is a function that renames actions s.t. f(7) =7 and f(a) = (a)

- notation:
[f]=[a1+ b1,...,an+— by] where a;,b; € NU {7}

System Verification 2024 /25 @ FCUP Concurrent Process algebra

Process algebras FC

Syntax

P>PQQ:=K]|aP | P+Q | 0| P[f] | P\L | P|Q

Ex. 2.12: Which are syntactically correct?

a.b.A+ B

(11) (a.B+ b.B)[a+ a, T+ b] (17)
(a.0+3.A)\ {3, b} (12) (a.B+7.B)[b+— a,br a] (18)
(a.0 +a.A)\{a, 7} (13) (a.B+ b.B)[a+ b, b+ 3] (19)
(a.0 +7.A)\ {a} (14) (a.b.A+3.0)|B (20)
7.7.B+3.0 (15) (a.b.A+3.0).B (21)
(0j0) +0 (16) (a.b.A+3.0)+ B (22)

System Verification 2024 /25 @ FCUP Concurrent Process algebra 17 / 38

(act) (su;n—l) (su$—2)
P, — P; P, = P}
a.P =P P+ Py P P+ Py P
(res) (rel)
PSP aadl PP
P\L < PI\L PIf] 12, prif]
(com1) (com2) (com3)
PP Q= Q PLP Q3¢
PIQ % P|Q PIQ % P|Q' PIQ = P'|Q

C System Verfcation 2024/25 @ FCUP Concurrent Process algebra I

CCS semantics - building an NFA

(sum-2)
P, % P,

P+ P, = P

(rel)
P P

(sum-1)
(act)
P, % P
a.P— P P1+P2i>P{
(res)
P2 pr
P\L % PI\L
(coml) (com2)
PP Q% @
PREPIQ Pl P

Ex.2.13: Draw the transition systems

PIF1 2 P1]
(com3) B
PSP Q¢

PIQ T P|Q

CM = coin.coffee.CM
CS = pub.coin.coffee.CS
SmUni = (CM|CS)\{coin, coffee}

System Verification 2024 /25 @ FCUP

Concurrent Process algebra

18 / 38

Exercises

Ex.2.14: Let A = b.a.B. Show that:
1. (A] b.0)\{b} 5 (a.B | 0)\{b}
2. (A| b.a.B) + ((b.A)[b+ a]) 2 Alb — a]

Ex.2.15: Draw the NFAs A and D

A=x.B+xx.C
B=xxA+y.C
C=xA

System Verification 2024 /25 @ FCUP

D =xx.x.D+ x.E

E=xF+y.F
F=x.D
Concurrent Process algebra 19 / 38

mCRL2 Tools — generate automata

Slides 3:
https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf

System Verification 2024 /25 @ FCUP Concurrent Process algebra

https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf

Observational Equivalence

Overview

Recall

1. F-transition systems, e.g., Non-deterministic Finite Automata:

—) b

2. Process algebra: P=2.Q Q=b.Q P|Q
3. Interaction between processes

4. Meaning of CCS using transition systems

Still missing
= When is a process P equivalent to a process Q7

= When can a process P be safely replaced by a process Q7

System Verification 2024 /25 @ FCUP Observational Equivalence

Observational Equivalence Informally FC

Two programs are observationally equivalent if it is impossible to observe any

difference in their behaviour

Here behaviour is described in terms of transition systems

. and therefore behaviour/equivalence needs to be pinned down to them

System Verification 2024 /25 @ FCUP Observational Equivalence

N
N

38

EQ1 - Language equivalence

Language equivalence

Definition
Two automata A, B are language equivalent iff Ly = Lg
(i.e. if they can perform the same finite sequences of transitions)

Example

alarm alarm

set | set

set

reset reset

Language equivalence applies when one can neither interact with a system, nor distinguish a
slow system from one that has come to a stand still.

System Verification 2024 /25 @ FCUP EQ1 - Language equivalence

Exercise

Ex.2.16: Find pairs of automata with the same language

o @

System Verification 2024 /25 @ FCUP EQ1 - Language equivalence

38

Ex. 2.17: Check if the processes are language equivalent

P = coin.(coffee.P + tea.P) Q = coin.coffee.Q + coin.tea.Q

C System Verfcation 2024/25 @ FCUP EQI — Language equivalence 25 /38

EQ2 — Similarity

Simulation FC

the quest for a behavioural equality:
able to identify states that cannot be distinguished by any realistic form of observation

Simulation

A state g simulates another state p if

every transition from q is corresponded by a transition from p and

this capacity is kept along the whole life of the system to which state space g belongs to.

System Verification 2024 /25 @ FCUP EQ2 — Similarity 26

38

Simulation of NFA (X — P(X)") FC
Definition

Given NFA A; and A over N with states S; and S, respectively, a relation R € S; x S5 is a
simulation iff, for all (p,q) € R and a € N,

(1) p—21p = (3d : d€S%: g-224 A P.¢)ER)

-
L

- 9
L

~

o

<
BV)

Q

System Verification 2024 /25 @ FCUP EQ2 — Similarity

38

Ex. 2.18: Find simulations

d
g —=q2 P2
/ /
9o po ——= p1
\

Qs —> a3 p3

© System Verfcation 2024/25 @ FCUP EQ2 - Similarity 28 /38

Ex. 2.18: Find simulations

d
g —=q2 P2

goSpo cf. {(qo,po), (g1, p1),(qa,p1),. ..}

~ System Verification 2024/25 @ FCUP EQ2 - Similarity 28 /38

Definition
p<qg = (3R :: Risasimulation and {(p,q) € R)
We say p is simulated by q.
Lemma

The similarity relation is a preorder
(ie, reflexive and transitive)

C System Verfcation 2024/25 @ FCUP EQ2 - Similarity 20 /38

EQ3 - Bisimilarity

Bisimulation

Definition

Given NFA A; and A; over N with states S; and S, respectively, relation R C S; X S, is a

bisimulation iff both R and its converse R° are simulations.

l.e., whenever (p,q) € R and a € N,

(2) g-224 = @p : pPeS: p-1p AP.q)ER)
PR A q p PR A
a = la la <= a
p/ p/ R q/ pl R q/ q/

System Verification 2024 /25 @ FCUP EQ3 - Bisimilarity

ic

Ex.2.19: Find bisimulations that include (g1, m)

7N]

q2 —>Q3

Ex.2.20: Find bisimulations that include (g1, h)

N =g hQa

C System Verfcation 2024/25 @ FCUP EQ3 - Bisimilarity 31/ 38

Bisimilarity
Definition
p~qg = (3 R :: Ris a bisimulation and (p, q) € R)
We say p is bisimilar to q.
Lemma

Two processes P and @ are bisimilar if there is a bisimulation that includes (P, Q).

Lemma
The bisimilarity relation is an equivalence relation

System Verification 2024 /25 @ FCUP EQ3 - Bisimilarity

w

Exercises

Ex. 2.21: Check if there is a bisimulation that include (g1, p1)

g1 P1
VRN l
a
g2 a3 P2
| | SN
qs a5 Pa Ps

Ex. 2.22: Check if there is a bisimulation that include (P, Q)

P = coin.(coffee.P + tea.P) Q® = coin.coffee.@ + coin.tea.@

System Verification 2024 /25 @ FCUP EQ3 - Bisimilarity

33 /38

Ex. 2.23: Check if there is a bisimulation that include (g1, p1)

g1 P1
RN |
92 a3 P2
| l RN
b c
ez} a5 Pa Ps

Ex. 2.24: Check if, for any process P

P~ P+0

C System Verfcation 2024/25 @ FCUP EQ3 - Bisimilarity 24 /38

mCRL2 Tools — check bisimilarity

Slides 3:
https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf

System Verification 2024 /25 @ FCUP EQ3 - Bisimilarity

https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf

Generalising Observational
Equivalences

F-Transition Systems and Observational Equivalence

Definition
Fix a functor F and consider two transition systems f : X — FX and g: Y — FY.
Two states x € X, y € Y are observationally equivalent if

= there exists a relation R C X x Y with (x,y) € R and

= there exists a transition system b : R — FR such that the diagram below
commutes

US| ™2

X R Y

L4k

FX<~—FR——=FY
Fmy Fy

If such is the case we write x ~ y

System Verification 2024 /25 @ FCUP Generalising Observational Equivalences

ic

38

Observational Equivalence for Moore Machine

Given (01,n1) : X = Ax X and (0p,m) : Y — A x Y we obtain from the previous

slide that x ~ y iff

System Verification 2024 /25 @ FCUP

Generalising Observational Equivalences

Observational Equivalence for Labelled Transition Systems FC

Recall that we used systems of type X — P(X)" for establishing the semantics of CCS
processes. This means that ...

notions of observational behaviour/equivalence for such transition systems directly
impact our concurrent language

Given i : X = P(X)VNand & : Y - P(Y)N, x ~ yiffforall 1 € N

» VX' € ti(x,n). Jy' € to(y, n). X' ~ '
» Yy € tr(y,n). I’ € ti(x,n). x' ~y’

System Verification 2024 /25 @ FCUP Generalising Observational Equivalences 38 /38

	Why transition systems?
	Defining Transition System with Functors
	CCS Process algebra
	Concurrent Process algebra
	Observational Equivalence
	EQ1 – Language equivalence
	EQ2 – Similarity
	EQ3 – Bisimilarity
	Generalising Observational Equivalences

