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Why transition systems?



A Sprinkle of Linguistics

During the module we will encounter two linguistic concepts that every programmer
should know:

• syntax - the rules used for determining whether a sentence is valid (in a language)
or not

• semantics - the meaning of valid sentences

Ex. 2.1: Syntax
The sentence/program x := p ; q is forbidden by the syntactic rules of most
programming languages

Ex. 2.2: Semantics
The sentence/program x := 1 has the meaning “writes 1 in the memory address
corresponding to x”
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The need for Semantics in Formal Analysis

How can one prove that a program does what is supposed to do if its semantics (i.e.
its meaning) is not established a priori ?

Ex. 2.3:
What is the end result of running x := 2 ; (x := x + 1 ∥ x := 0) ?

parallelism operator

Ex. 2.4: Value of y?
int x = 0 ; int f (){x++; return x ; } int g(){x--; return x ; } int y = f () + g();

Widely used programming languages still lacks a formal semantics
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Defining Transition System with
Functors



Preliminaries pt. I

Definition (Functor)
A functor F sends a set X into a new set FX and a function f : X ! Y into a new
function Ff : FX ! FY such that

F (id) = id F (g · f ) = Fg · Ff

Fix a set A. The following two functors then naturally arise

• product - X 7! A × X , f 7! id × f
• exponential - X 7! XA, f 7! (g 7! f · g)

System Verification 2024/25 @ FCUP Defining Transition System with Functors 5 / 38



Preliminaries pt. II - the List and Powerset functors

The list functor - [X ] 7! X ∗, [f ] 7! map f

The powerset functor - almost like the list functor; the difference is that we do not
look at the order in which elements appear and how many times they repeat. Formally,

P(X ) 7! ?

{A | A ⊆ X}

, P(f ) 7! ?

(A 7! {f (a) | a ∈ A})

Ex. 2.5: Powerset on Booleans
P(Bool) 7!

{∅, {⊤}, {⊥}, {⊤, ⊥}}

P(not) 7!

Bools 7! {not(b) | b ∈ Bools}

applies f to every element of a given list
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A (Generalised) Notion of a Transition System

Definition (Transition system)
Let F be a functor. An F -transition system is a map X ! FX

Some famous examples of F -transition systems

• Moore machine - X ! N × X
• Deterministic automata - X ! Bool × XN

• Non-deterministic automata - X ! Bool × P(X )N

• Markov chain - X ! D(X )
Powerset functor

Distribution functor
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Exercise

Recall functors
X 7! A × X X 7! P(X ) X 7! XA X 7! D(X )

Ex. 2.6: Formalise as an F-transition system

A0 A1
ab c B0 B1

aa b

C0 C1 C2 · · ·
a a a

System Verification 2024/25 @ FCUP Defining Transition System with Functors 8 / 38



Our First encounter with Coalgebra

Indeed the idea of working at the level of

Functors as Transition Types

is a very fruitful one; and which we only barely grasped —

in essence, it provides a universal theory of transition systems that can be instantiated
to most kinds of transition system we will encounter in our life
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CCS Process algebra



CCS Process algebra

Sequential CCS - Syntax

P ∋ P, Q ::= K | α.P | P + Q | 0 | P[f ] | P\L | P|Q

where
- α ∈ N ∪ {τ} is an action
- K s a collection of process names or process constants
- L ⊆ N is a set of labels
- f is a function that renames actions s.t. f (τ) = τ

- notation:
[f ] = [a1 7! b1, . . . , an 7! bn]
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CCS Process algebra

Syntax

P ∋ P, Q ::= K | α.P | P + Q | 0 | P[f ] | P\L | P|Q

Ex. 2.7: Which are NOT syntactically correct? Why?

a.b.A + B (1)
(a.0 + b.A)\ {a, b, c} (2)
(a.0 + b.A)\ {a, τ} (3)
a.B + [b 7! a] (4)
τ.τ.B + 0 (5)

a.(a + b).A (6)
(a.B + b.B)[a 7! a, τ 7! b] (7)
(a.B + τ.B)[b 7! a, a 7! a] (8)
(a.b.A + b.0).B (9)
(a.b.A + b.0) + B (10)
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CCS semantics - building a transition system

Every P yields a transition system X ! ??? with transitions prescribed by the rules below.

(act)

α.P α
−! P

(sum-1)
P1

α
−! P ′

1

P1 + P2
α
−! P ′

1

(sum-2)
P2

α
−! P ′

2

P1 + P2
α
−! P ′

2

(res)
P α
−! P ′

P\L α
−! P ′\L

α /∈ L
(rel)

P α
−! P ′

P[f ] f (α)
−−−! P ′[f ]

• Initial states: the process being translated

• Final states: all states are final

• Language: possible sequences of actions of a process

Ex. 2.7: Build a derivation tree to prove the transitions below
1. (a.A + b.B) b

−! B

2. (a.b.A + (b.a.B + c.a.C)) b
−! a.B

3. ((a.B + b.A)[a 7! c])\{a, b} c
−! (B[a 7! c])\{a, b}
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Ex. 2.8: Build a derivation tree to prove the transitions below
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Exercise

Ex. 2.9: Draw the automata

CM = coin.coffee.CM
CS = pub.(coin.coffee.CS + coin.tea.CS)

Ex. 2.10: What is the language of the process A?

A = goLeft.A + goRight.B
B = rest.0

Check result online: http://lmf.di.uminho.pt/ccs-caos
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Exercise

Ex. 2.11: Write the process of the flowchart above
P = powerOn.Q

Q = selMocha.addChocolate.Mk + selLatte.Mk + . . .

Mk = addMilk . . .
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Concurrent Process algebra



Overview

Recall
1. Non-deterministic Finite Automata (X ! Bool × P(X )N):

q1 q2
a b

2. (Sequential) Process algebra: P = a.Q Q = b.Q
3. Meaning of (2) using (1)

Still missing
• Interaction between processes
• Enrich (2) and (3)
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Process algebras

CCS - Updated Syntax

P ∋ P, Q ::= K | α.P | P + Q | 0 | P[f ] | P\L | P|Q

where
- α ∈ N ∪ N ∪ {τ} is an action
- K s a collection of process names or process constants
- L ⊆ N is a set of labels
- f is a function that renames actions s.t. f (τ) = τ and f (a) = f (a)
- notation:

[f ] = [a1 7! b1, . . . , an 7! bn] where ai , bi ∈ N ∪ {τ}
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Process algebras

Syntax

P ∋ P, Q ::= K | α.P | P + Q | 0 | P[f ] | P\L | P|Q

Ex. 2.12: Which are syntactically correct?

a.b.A + B (11)
(a.0 + a.A)\ {a, b} (12)
(a.0 + a.A)\ {a, τ} (13)
(a.0 + τ .A)\ {a} (14)
τ.τ.B + a.0 (15)
(0|0) + 0 (16)

(a.B + b.B)[a 7! a, τ 7! b] (17)
(a.B + τ.B)[b 7! a, b 7! a] (18)
(a.B + b.B)[a 7! b, b 7! a] (19)
(a.b.A + a.0)|B (20)
(a.b.A + a.0).B (21)
(a.b.A + a.0) + B (22)
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CCS semantics - building an NFA

(act)

α.P α
−! P

(sum-1)
P1

α
−! P ′

1

P1 + P2
α
−! P ′

1

(sum-2)
P2

α
−! P ′

2

P1 + P2
α
−! P ′

2

(res)
P α
−! P ′

P\L α
−! P ′\L

α, α /∈ L
(rel)

P α
−! P ′

P[f ] f (α)
−−−! P ′[f ]

(com1)
P α
−! P ′

P|Q α
−! P ′|Q

(com2)
Q α

−! Q′

P|Q α
−! P|Q′

(com3)

P a
−! P ′ Q a

−! Q′

P|Q τ
−! P ′|Q′

Ex. 2.13: Draw the transition systems
CM = coin.coffee.CM
CS = pub.coin.coffee.CS

SmUni = (CM|CS)\{coin, coffee}
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Exercises

Ex. 2.14: Let A = b.a.B. Show that:
1. (A | b.0)\{b} τ

−! (a.B | 0)\{b}
2. (A | b.a.B) + ((b.A)[b 7! a]) a

−! A[b 7! a]

Ex. 2.15: Draw the NFAs A and D

A = x .B + x .x .C
B = x .x .A + y .C
C = x .A

D = x .x .x .D + x .E
E = x .F + y .F
F = x .D
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mCRL2 Tools – generate automata
Slides 3:

https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf
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Observational Equivalence



Overview

Recall
1. F-transition systems, e.g., Non-deterministic Finite Automata:

q1 q2
a b

2. Process algebra: P = a.Q Q = b.Q P|Q
3. Interaction between processes
4. Meaning of CCS using transition systems

Still missing
• When is a process P equivalent to a process Q?
• When can a process P be safely replaced by a process Q?
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Observational Equivalence Informally

Two programs are observationally equivalent if it is impossible to observe any
difference in their behaviour

Here behaviour is described in terms of transition systems

. . . and therefore behaviour/equivalence needs to be pinned down to them
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EQ1 – Language equivalence



Language equivalence

Definition
Two automata A, B are language equivalent iff LA = LB

(i.e. if they can perform the same finite sequences of transitions)

Example

2.3 Equivalence of behaviours
When do two systems have the same behaviour? Or stated differently, when are two labelled transition
systems behaviourally equivalent? The initial answer to this question is simple. Whenever the difference
in behaviour cannot be observed, we say that the behaviour is the same. The obvious next question is how
behaviour is observed? The answer to this latter question is that there are many ways to observe behaviour
and consequently many different behavioural equivalences exist. We present the most important ones here.
For an overview see [20].

2.3.1 Trace equivalence
One of the coarsest (most unifying) notions of behavioural equivalence is trace equivalence. The essential
idea is that two transition systems are equivalent if the same sequences of actions can be performed from
their respective initial states. Traces are sequences of actions, typically denoted as a1a2a3 . . . an. We
typically use letters σ and ρ to represent traces. The termination symbol ! can also be part of a trace. The
symbol ε represents the empty trace.

Definition 2.3.1 (Trace equivalence). Let A = (S,Act ,−→, s, T ) be a labelled transition system. The set
of traces (runs, sequences) Traces(t) for a state t ∈ S is the minimal set satisfying:

1. ε ∈ Traces(t), i.e. the empty trace is a member of Traces(t),

2. ! ∈ Traces(t) iff t ∈ T , and

3. if there is a state t′ ∈ S such that t
a−→ t′ and σ ∈ Traces(t′) then aσ ∈ Traces(t).

Two states t, u ∈ S are called trace equivalent if and only if (iff) Traces(t) = Traces(u). Two transition
systems are trace equivalent iff their initial states are trace equivalent.

The sets of traces of the two transition systems in figure 2.1 are respectively {ε, a, ab, abc, abcd} and
{ε, a, ab, abc, abcd, abcd!}. The two transition systems are not trace equivalent.

set

set

reset

alarm

set

alarm

reset

Figure 2.5: Two trace-equivalent alarm clocks

Consider the labelled transition systems for the two alarm clocks depicted in figure 2.5. The alarm
clock at the left-hand side has a nondeterministic choice between two transitions labelled with set : if it
moves with the set transition to right, it behaves the same as the right-hand-side labelled transition system.
However, if it moves to left with the other set transition, it deadlocks. Hence, the observational behaviour
of the two transition systems is different: in the left-hand-side one sometimes is blocked while in the right-
hand-side one can keep doing actions. This is the reason why trace equivalence generally is not used and a
finer notions of equivalence are used which refine trace equivalence by taking deadlocks into account.

However, there are cases where trace equivalence is useful. If the only observations are that one can
see what is happening without being able to influence the behaviour and one cannot observe that no more
actions are possible, trace equivalence is the right notion. In other words, trace equivalence is appropriate
when one can neither interact with a system, nor distinguish a slow system from one that has come to a
stand still.

Also, many properties only regard the traces of processes. A property can for instance be that before
every b an a action must be done. This property is preserved by trace equivalence. So, in order to determine

20

Language equivalence applies when one can neither interact with a system, nor distinguish a
slow system from one that has come to a stand still.
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Exercise

Ex. 2.16: Find pairs of automata with the same language

A0 A1
aa b B0 B1

aa a

C0 C1
aa b D0 D1

aa a

E0 E1

a

a
a
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Exercise

Ex. 2.17: Check if the processes are language equivalent

P = coin.(coffee.P + tea.P) Q = coin.coffee.Q + coin.tea.Q
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EQ2 – Similarity



Simulation

the quest for a behavioural equality:
able to identify states that cannot be distinguished by any realistic form of observation

Simulation
A state q simulates another state p if
every transition from q is corresponded by a transition from p and
this capacity is kept along the whole life of the system to which state space q belongs to.
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Simulation of NFA (X ! P(X )N)

Definition
Given NFA A1 and A2 over N with states S1 and S2 respectively, a relation R ⊆ S1 × S2 is a
simulation iff, for all ⟨p, q⟩ ∈ R and a ∈ N,

(1) p a
−!1 p′ ⇒ ⟨∃ q′ : q′ ∈ S2 : q a

−!2 q′ ∧ ⟨p′, q′⟩ ∈ R⟩

p

a

��

R q

⇒
q

a

��
p′ p′ R q′
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Example

Ex. 2.18: Find simulations

q1
d // q2 p2

q0

a
>>

a
  

p0
a // p1

d
>>

e
  

q4 e
// q3 p3

q0 ≲ p0 cf. {⟨q0, p0⟩, ⟨q1, p1⟩, ⟨q4, p1⟩, . . .}
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Similarity

Definition

p ≲ q ≡ ⟨∃ R :: R is a simulation and ⟨p, q⟩ ∈ R⟩

We say p is simulated by q.

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)
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EQ3 – Bisimilarity



Bisimulation

Definition
Given NFA A1 and A2 over N with states S1 and S2 respectively, relation R ⊆ S1 × S2 is a
bisimulation iff both R and its converse R◦ are simulations.

I.e., whenever ⟨p, q⟩ ∈ R and a ∈ N,

(1) p a
−!1 p′ ⇒ ⟨∃ q′ : q′ ∈ S2 : q a

−!2 q′ ∧ ⟨p′, q′⟩ ∈ R⟩

(2) q a
−!2 q′ ⇒ ⟨∃ p′ : p′ ∈ S1 : p a

−!1 p′ ∧ ⟨p′, q′⟩ ∈ R⟩

p q

p′ q′

R q

Rp′

a a⇒
p q

p′ q′R q′

Rp

a a⇐
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Examples

Ex. 2.19: Find bisimulations that include ⟨q1, m⟩

q1
a

~~

a

  

m
a
��

q2
c // q3 chh n cee

Ex. 2.20: Find bisimulations that include ⟨q1, h⟩

q1
a // q2

a // q3
a // · · · h aee
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Bisimilarity

Definition

p ∼ q ≡ ⟨∃ R :: R is a bisimulation and ⟨p, q⟩ ∈ R⟩

We say p is bisimilar to q.

Lemma
Two processes P and Q are bisimilar if there is a bisimulation that includes ⟨P, Q⟩.

Lemma
The bisimilarity relation is an equivalence relation
(ie, symmetric, reflexive and transitive)
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Exercises

Ex. 2.21: Check if there is a bisimulation that include ⟨q1, p1⟩

q1
a

~~

a

  

p1

a
��

q2

c
��

q3

c
��

p2
c

~~

c

  
q4 q5 p4 p5

Ex. 2.22: Check if there is a bisimulation that include ⟨P, Q⟩

P = coin.(coffee.P + tea.P) Q = coin.coffee.Q + coin.tea.Q
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Exercises

Ex. 2.23: Check if there is a bisimulation that include ⟨q1, p1⟩

q1
a

~~

a

  

p1

a
��

q2

b
��

q3

c
��

p2
b

~~

c

  
q4 q5 p4 p5

Ex. 2.24: Check if, for any process P

P ∼ P + 0
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mCRL2 Tools – check bisimilarity
Slides 3:

https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf
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Generalising Observational
Equivalences



F -Transition Systems and Observational Equivalence

Definition
Fix a functor F and consider two transition systems f : X ! FX and g : Y ! FY .
Two states x ∈ X , y ∈ Y are observationally equivalent if

• there exists a relation R ⊆ X × Y with (x , y) ∈ R and
• there exists a transition system b : R ! FR such that the diagram below

commutes

X
f
��

Rπ1oo π2 //

b
��

Y
g
��

FX FR
Fπ1
oo

Fπ2
// FY

If such is the case we write x ∼ y
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Observational Equivalence for Moore Machine

Given ⟨o1, n1⟩ : X ! A × X and ⟨o2, n2⟩ : Y ! A × Y we obtain from the previous
slide that x ∼ y iff

• o1(x) = o2(y)
• n1(x) ∼ n2(y)
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Observational Equivalence for Labelled Transition Systems

Recall that we used systems of type X ! P(X )N for establishing the semantics of CCS
processes. This means that . . .

notions of observational behaviour/equivalence for such transition systems directly
impact our concurrent language

Given t1 : X ! P(X )N and t2 : Y ! P(Y )N , x ∼ y iff for all l ∈ N

• ∀x ′ ∈ t1(x , n). ∃y ′ ∈ t2(y , n). x ′ ∼ y ′

• ∀y ′ ∈ t2(y , n). ∃x ′ ∈ t1(x , n). x ′ ∼ y ′
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