
4. Basic building blocks of concurrency

Nelma Moreira & José Proença
Concurrent programming (CC3040) 2023/2024

CISTER – U.Porto, Porto, Portugal https://fm-dcc.github.io/pc2324

https://fm-dcc.github.io/pc2324

Overview

We are here

Blocks of sequential code running concurrently and sharing memory:
• What is Scala?
• Concurrency in Java and its memory model
• Basic concurrency blocks and libraries
• Futures and Promises
• Data-Parallel Collections
• Reactive Programming (Concurrently)
• Software Transactional Memory
• Actor model

Nelma Moreira & José Proença Overview 2 / 36

What we will see

• Tread pools: Executor and ExecutionContext
• Non-blocking synchronisation – compare-and-set (CAS)
• Lazy (concurrent) values
• Concurrent collections
• Running OS processes

Nelma Moreira & José Proença Overview 3 / 36

Existing thread pools in Scala

Executor interface

Executor executor = anExecutor;
executor.execute(new RunnableTask1 ());
executor.execute(new RunnableTask2 ());
...

import scala.concurrent._
import java.util.concurrent.ForkJoinPool

object ExecutorsCreate extends App {
val executor = new ForkJoinPool
executor.execute(new Runnable {

def run() = log("This␣task␣is␣run␣
asynchronously.")

})
Thread.sleep (500) // not needed with

fork := false in SBT
}

• Executor: can start a new thread, an
existing one, or the current one

• Abstracts from the management of
threads

• ExecutorService: API that extends
Executor with shutdown

• executor.shutdown ! executes all
tasks and then stops working
threads

• executor.awaitTermination(...) !

force termination if, after a given
time, the tasks are not completed

Nelma Moreira & José Proença Existing thread pools in Scala 4 / 36

Scala’s ExecutionContext

import scala.concurrent._
object ExecutionContextGlobal extends App {

val ectx = ExecutionContext.global
ectx.execute(new Runnable {

def run() = log("Running␣on␣the␣execution␣context.")
})
Thread.sleep (500)

}

object ExecutionContextCreate extends App {
val pool = new forkjoin.ForkJoinPool (2)
val ectx = ExecutionContext. fromExecutorService (pool)
ectx.execute(new Runnable {

def run() = log("Running␣on␣the␣execution␣context␣
again.")

})
Thread.sleep (500)

}

• scala.concurrent: has
ExecutionContext

• Similar to Executor but
more Scala specific

• often used as implicit
parameter

• global: default execution
context (internally uses a
ForkJoinPool)

• fromExecutorService:
creates ExecutionContext
from ExecutorService

Nelma Moreira & José Proença Existing thread pools in Scala 5 / 36

Simplifying the execution

Similar to threads:
def thread(body: =>Unit): Thread

= {
val t = new Thread {

override def run() = body
}
t.start ()
t

}

We now define execute

def execute(body: =>Unit) =
ExecutionContext.global.execute(

new Runnable { def run() = body }
)
// For example :
object ExecutionContextSleep extends App {

for (i<- 0 until 32) execute {
Thread.sleep (2000)
log(s"Task␣$i␣completed.")

}
Thread.sleep (10000)

}

Nelma Moreira & José Proença Existing thread pools in Scala 6 / 36

Avoid blocking indefinitely

object ExecutionContextSleep
extends App {

for (i<- 0 until 32) execute {
Thread.sleep (2000)
log(s"Task␣$i␣completed.")

}
Thread.sleep (10000)

}

• Expected: all executions terminate after 2s
• Result: only some execute after 2s

• Using quad-core CPU with hyper threading
• global has 8 threads in the thread pool

• executes tasks in batches of 8
• after 2s, 8 tasks print "completed"
• after 2s more, 8 more print "completed"
• sleep: all enter a timed waiting state

• if T1 waits for T10 to notify: blocks
indefinitely

Nelma Moreira & José Proença Existing thread pools in Scala 7 / 36

Avoid blocking indefinitely

object ExecutionContextSleep
extends App {

for (i<- 0 until 32) execute {
Thread.sleep (2000)
log(s"Task␣$i␣completed.")

}
Thread.sleep (10000)

}

• Expected: all executions terminate after 2s
• Result: only some execute after 2s

• Using quad-core CPU with hyper threading
• global has 8 threads in the thread pool

• executes tasks in batches of 8
• after 2s, 8 tasks print "completed"
• after 2s more, 8 more print "completed"
• sleep: all enter a timed waiting state

• if T1 waits for T10 to notify: blocks
indefinitely

Nelma Moreira & José Proença Existing thread pools in Scala 7 / 36

Avoid blocking indefinitely

object ExecutionContextSleep
extends App {

for (i<- 0 until 32) execute {
Thread.sleep (2000)
log(s"Task␣$i␣completed.")

}
Thread.sleep (10000)

}

• Expected: all executions terminate after 2s
• Result: only some execute after 2s

• Using quad-core CPU with hyper threading
• global has 8 threads in the thread pool

• executes tasks in batches of 8
• after 2s, 8 tasks print "completed"
• after 2s more, 8 more print "completed"
• sleep: all enter a timed waiting state

• if T1 waits for T10 to notify: blocks
indefinitely

Nelma Moreira & José Proença Existing thread pools in Scala 7 / 36

Avoid blocking indefinitely

object ExecutionContextSleep
extends App {

for (i<- 0 until 32) execute {
Thread.sleep (2000)
log(s"Task␣$i␣completed.")

}
Thread.sleep (10000)

}

• Expected: all executions terminate after 2s
• Result: only some execute after 2s

• Using quad-core CPU with hyper threading
• global has 8 threads in the thread pool

• executes tasks in batches of 8
• after 2s, 8 tasks print "completed"
• after 2s more, 8 more print "completed"
• sleep: all enter a timed waiting state

• if T1 waits for T10 to notify: blocks
indefinitely

Nelma Moreira & José Proença Existing thread pools in Scala 7 / 36

Lock-free programming

Avoiding syncrhonized with atomic variables

• atomic variable: memory location that
supports complex linearizable operations

• ... i.e., appears to occur atomically
• write of a volatile operation:

simple linearizable operation
• at least two reads and/or writes:

complex linearizable operation

• java.util.concurrent.atomic supports some
complex ones:

• AtomicBoolean
• AtomicInteger
• AtomicLong
• AtomicReference

Variation of Example 1 (getUniqueId)
import

java.util.concurrent.atomic._

object AtomicUid extends App {
private val uid =

new AtomicLong (0L)

def getUniqueId (): Long =
uid. incrementAndGet ()

execute {
log(s"Uid␣asynchronously:␣$

{getUniqueId ()}")
}
log(s"Got␣a␣unique␣id:␣$

{getUniqueId ()}")
}

Nelma Moreira & José Proença Lock-free programming 8 / 36

Avoiding syncrhonized with atomic variables

• atomic variable: memory location that
supports complex linearizable operations

• ... i.e., appears to occur atomically
• write of a volatile operation:

simple linearizable operation
• at least two reads and/or writes:

complex linearizable operation
• java.util.concurrent.atomic supports some

complex ones:
• AtomicBoolean
• AtomicInteger
• AtomicLong
• AtomicReference

Variation of Example 1 (getUniqueId)
import

java.util.concurrent.atomic._

object AtomicUid extends App {
private val uid =

new AtomicLong (0L)

def getUniqueId (): Long =
uid. incrementAndGet ()

execute {
log(s"Uid␣asynchronously:␣$

{getUniqueId ()}")
}
log(s"Got␣a␣unique␣id:␣$

{getUniqueId ()}")
}

Nelma Moreira & José Proença Lock-free programming 8 / 36

Compare-And-Set (CAS) – the ♡ of complex linearizable operations

• CAS can be used to implement
others:

• getAndSet
• decrementAndGet
• addAndGet

• available in all atomic variables
• including AtomicReference[T]

Long-CAS conceptually equivalent to:
def compareAndSet(ov: Long , nv: Long):

Boolean = this.synchronized {
if (this.get != ov) false else {

this.set(nv)
true

} }

Ref-CAS conceptually equivalent to:
def compareAndSet(ov: T, nv: T):

Boolean = this.synchronized {
if (!(this.get eq ov)) false else {

this.set(nv)
true

} }

Nelma Moreira & José Proença Lock-free programming 9 / 36

Using CAS

• Back to Example 1 (getUniqueId)
• Need to keep-on-trying
• Looks like busy-waiting, but it is

much better
• Here: using (cheap) recursion

instead of a loop

@tailrec def getUniqueId (): Long = {
val oldUid = uid.get
val newUid = oldUid + 1
if (uid.compareAndSet(oldUid ,

newUid)) newUid
else getUniqueId ()

}

Nelma Moreira & José Proença Lock-free programming 10 / 36

Lock-free programming – really?

• Lock-free programs: without locks
(with synchronized)

• Achieved using atomic variables (and
some re-trying)

• No locks, no deadlocks...

• (almost):
• lock-free ⇒ use atomic variables

(for atomicity)
• use atomic variables ��⇒ lock-free

object AtomicLock extends App {
private val lock = new

AtomicBoolean(false)
def mySynchronized(body: =>Unit):

Unit = {
while (!lock.compareAndSet(false ,

true)) {}
try body finally lock.set(false)

}
var count = 0
for (i<- 0 until 10) execute {

mySynchronized { count += 1 } }
Thread.sleep (1000)
log(s"Count␣is:␣$count")

}

Nelma Moreira & José Proença Lock-free programming 11 / 36

Lock-free programming – really?

• Lock-free programs: without locks
(with synchronized)

• Achieved using atomic variables (and
some re-trying)

• No locks, no deadlocks...
• (almost):

• lock-free ⇒ use atomic variables
(for atomicity)

• use atomic variables ��⇒ lock-free

object AtomicLock extends App {
private val lock = new

AtomicBoolean(false)
def mySynchronized(body: =>Unit):

Unit = {
while (!lock.compareAndSet(false ,

true)) {}
try body finally lock.set(false)

}
var count = 0
for (i<- 0 until 10) execute {

mySynchronized { count += 1 } }
Thread.sleep (1000)
log(s"Count␣is:␣$count")

}

Nelma Moreira & José Proença Lock-free programming 11 / 36

Lock-free programming – really?

• Lock-free programs: without locks
(with synchronized)

• Achieved using atomic variables (and
some re-trying)

• No locks, no deadlocks...
• (almost):

• lock-free ⇒ use atomic variables
(for atomicity)

• use atomic variables ��⇒ lock-free

object AtomicLock extends App {
private val lock = new

AtomicBoolean(false)
def mySynchronized(body: =>Unit):

Unit = {
while (!lock.compareAndSet(false ,

true)) {}
try body finally lock.set(false)

}
var count = 0
for (i<- 0 until 10) execute {

mySynchronized { count += 1 } }
Thread.sleep (1000)
log(s"Count␣is:␣$count")

}

Nelma Moreira & José Proença Lock-free programming 11 / 36

Lock-freedom definition

Lock-freedom
Given a set of threads and an operation OP.
OP is lock-free if at least one thread always completes OP after a finite number of
steps, regardless of the speed at which different threads progress.

Nelma Moreira & José Proença Lock-free programming 12 / 36

One more example: Concurrent filesystem

• Example 1: getUniqueId()
• Example 2: Logging Bank Transfers
• Example 3: Thread pool
• Example 4: Batman
• Example 5: Concurrent filesystem

Nelma Moreira & José Proença Lock-free programming 13 / 36

Concurrent filesystem

Filesystem API
T1 is creating F:
T2 cannot copy or delete F

T1 & T2 are copying F:
T3 cannot delete F

T1 is deleting F:
T2 cannot copy nor delete F

Traditional Building Blocks of Concurrency

[79]

Note that, in the case of the Copying state, the n field also tracks how many concurrent
copies are in progress. When using atomic variables, it is often useful to draw a diagram of
the different states that an atomic variable can be in. As illustrated in the following figure,
state is set to Creating immediately after an Entry class is created and then becomes the
Idle state. After that, an Entry object can jump between the Copying and Idle states
indefinitely and, eventually, get from Idle to Deleting. After getting into the Deleting
state, the Entry class can no longer be modified; this indicates that we are about to delete
the file.

Let's assume that we want to delete a file. There might be many threads running inside our
file manager, and we want to avoid having two threads delete the same file. We will require
the file being deleted to be in the Idle state and atomically change it to the Deleting state.
If the file is not in the Idle state, we report an error. We will use the logMessage method,
which is defined later; for now, we can assume that this method just calls our log
statement:

@tailrec private def prepareForDelete(entry: Entry): Boolean = {
 val s0 = entry.state.get
 s0 match {
 case i: Idle =>
 if (entry.state.compareAndSet(s0, new Deleting)) true
 else prepareForDelete(entry)
 case c: Creating =>
 logMessage("File currently created, cannot delete."); false
 case c: Copying =>
 logMessage("File currently copied, cannot delete."); false
 case d: Deleting =>
 false
 }
}

[
in “Learning Concurrent

Programming in Scala”, pg. 79

]

Nelma Moreira & José Proença Lock-free programming 14 / 36

Concurrent filesystem – Scala data types

Filesystem API
T1 is creating F:
T2 cannot copy or delete F

T1 & T2 are copying F:
T3 cannot delete F

T1 is deleting F:
T2 cannot copy nor delete F

class Entry(val isDir: Boolean) {
val state = new AtomicReference[State](new Idle)

}

sealed trait State
class Idle extends State
class Creating extends State
class Copying(val n: Int) extends State
class Deleting extends State

Nelma Moreira & José Proença Lock-free programming 15 / 36

Deleting and Copying

Deleting: prepare (checks for permission) then delete (perform delete)

Copying: aquire (get permission); copy (perform action); then release (give permission)

Nelma Moreira & José Proença Lock-free programming 16 / 36

Prepare for deleting

@tailrec
private def prepareForDelete(entry: Entry): Boolean = {

val s0 = entry.state.get
s0 match {

case i: Idle =>
if (entry.state. compareAndSet(s0 , new Deleting)) true
else prepareForDelete(entry)

case c: Creating =>
logMessage("File␣currently␣created ,␣cannot␣delete."); false

case c: Copying =>
logMessage("File␣currently␣copied ,␣cannot␣delete."); false

case d: Deleting =>
false

}
}

logMessage: presented later – similar to log, but stores the log message
Nelma Moreira & José Proença Lock-free programming 17 / 36

Bad copy – the ABA problem

“ABA” problem: two readings of the same value A lead to believe that B was never
present (type of race condition)

Illustrated by a bad acquire-release for Copying, using a mutable n in:
Copying(var n: Int)

Nelma Moreira & José Proença Lock-free programming 18 / 36

Bad code – acquire/release Copying

def releaseCopy(e: Entry): Copying = e.state.get match {
case c: Copying =>

val nstate = if (c.n == 1) new Idle else new Copying(c.n - 1)
if (e.state.compareAndSet(c, nstate)) c
else releaseCopy(e)

}

def acquireCopy(e: Entry , c: Copying) = e.state.get match {
case i: Idle =>

c.n = 1
if (!e.state. compareAndSet(i, c)) acquireCopy(e, c)

case oc: Copying =>
c.n = oc.n + 1
if (!e.state. compareAndSet(oc , c)) acquireCopy(e, c)

}

Optimization: reusing previous Copying if possible
Nelma Moreira & José Proença Lock-free programming 19 / 36

Bad trace – T1 release (T2 starts rel.); T3 acquires; T1 acquire; T2 releases
wronglyTraditional Building Blocks of Concurrency

[82]

This scenario is shown in the following figure:

In the preceding example, the ABA problem manifests itself in the execution of thread T2.
Having first read the value of the state field in the Entry object with the get method and
with the compareAndSet method later, thread T2 assumes that the value of the state field
has not changed between these two writes. In this case, this leads to a program error.

There is no general technique to avoid the ABA problem, so we need to guard the program
against it on a per-problem basis. Still, the following guidelines are useful when avoiding
the ABA problem in a managed runtime, such as JVM:

Create new objects before assigning them to the AtomicReference objects
Store immutable objects inside the AtomicReference objects
Avoid assigning a value that was previously already assigned to an atomic
variable
If possible, make updates to numeric atomic variables monotonic, that is, either
strictly decreasing or strictly increasing with respect to the previous value

There are other techniques in order to avoid the ABA problem, such as pointer masking and
hazard pointers, but these are not applicable to JVM.

In some cases, the ABA problem does not affect the correctness of the algorithm; for
example, if we change the Idle class to a singleton object, the prepareForDelete method
will continue to work correctly. Still, it is a good practice to follow the preceding guidelines,
because they simplify the reasoning about lock-free algorithms.

[in “Learning Concurrent Programming in Scala”, pg. 82]

Nelma Moreira & José Proença Lock-free programming 20 / 36

Some guidelines to avoid the ABA problem

• use fresh objects in AtomicReference

• use immutable objects in AtomicReference

• avoid re-assigning the same value to an atomic variable
• only increment or decrement values of numeric atomic variables (if possible)

Nelma Moreira & José Proença Lock-free programming 21 / 36

Lazy values

Lazy values can cause deadlocks

• lazy values: initialized when read
for the first time

• these should not depend-on/modify
state (non-determinism)

• code in singleton objects: lazy
execution

• under the hood: first write uses a
lock – to ensure at most a thread
initialises a lazy value

• stack overflow (sequential code)
can become

deadlock (concurrent code)

object LazyValsCreate extends App {
var x = 5
lazy val y = x+2
execute {log(s"Wrk:␣y␣=␣$y")}
x = 10
log(s"Main:␣y␣=␣$y")
// y = 7 or 12 in both cases
Thread.sleep (500)

}

object LazyValsDeadlock extends App {
object A { lazy val x: Int = B.y }
object B { lazy val y: Int = A.x }
execute { B.y }
A.x

}

Nelma Moreira & José Proença Lazy values 22 / 36

Concurrent (mutable) collections

Default mutable collections are not concurrent

• Naive code: arbitrarily returns
different results and exceptions

• Corruption of the internal state
• Possible fixes:

• immutable collections + atomic
variables

• mutable collections + synchronized
• dedicated libraries

import scala.collection._
object CollectionsBad extends App {

val buffer =
mutable.ArrayBuffer[Int]()

def asyncAdd(numbers: Seq[Int]) =
execute {

buffer ++= numbers
log(s"buffer␣=␣$buffer")

}
asyncAdd (0 until 10)
asyncAdd (10 until 20)
Thread.sleep (500)

}

Nelma Moreira & José Proença Concurrent (mutable) collections 23 / 36

Default mutable collections are not concurrent

• Naive code: arbitrarily returns
different results and exceptions

• Corruption of the internal state
• Possible fixes:

• immutable collections + atomic
variables
(does not scale)

• mutable collections + synchronized
(assuming collections do not block;
may not scale)

• dedicated libraries
(far better performance and
scalability)

import scala.collection._
object CollectionsBad extends App {

val buffer =
mutable.ArrayBuffer[Int]()

def asyncAdd(numbers: Seq[Int]) =
execute {

buffer ++= numbers
log(s"buffer␣=␣$buffer")

}
asyncAdd (0 until 10)
asyncAdd (10 until 20)
Thread.sleep (500)

}

Nelma Moreira & José Proença Concurrent (mutable) collections 23 / 36

Some concurrent collections

• Concurrent queues
• java.util.concurrent.BlockingQueue interface
• ...ArrayBlockingQueue class (bounded)
• ...LinkedBlockingQueue class (unbounded)

• Concurrent Sets and Maps
• scala.collection.concurrent.Map trait
• java.util.concurrent.ConcurrentHashMap class

Nelma Moreira & José Proença Concurrent (mutable) collections 24 / 36

BlockingQueue API

Traditional Building Blocks of Concurrency

[90]

The concurrent collection that supports this kind of buffering is called a concurrent queue.
There are three main operations we expect from a concurrent queue. The enqueue operation
allows producers to add work elements to the queue, and the dequeue operation allows
consumers to remove them. Finally, sometimes we want to check whether the queue is
empty or inspect the value of the next item without changing the queue's contents.
Concurrent queues can be bounded, which means that they can only contain a maximum
number of elements, or they can be unbounded, which means that they can grow
indefinitely. When a bounded queue contains the maximum number of elements, we say it
is full. The semantics of the various versions of enqueue and dequeue operations differ with
respect to what happens when we try to enqueue to a full queue or dequeue from an empty
queue. This special case needs to be handled differently by the concurrent queue. In single-
threaded programming, sequential queues usually return a special value such as null or
false when they are full or empty, or simply throw an exception. In concurrent
programming, the absence of elements in the queue can indicate that the producer has not
yet enqueued an element, although it might enqueue it in the future. Similarly, a full queue
means that the consumer did not yet remove elements but will do so later. For this reason,
some concurrent queues have blocking enqueue and dequeue implementations, which block
the caller until the queue is non-full or non-empty, respectively.

JDK represents multiple efficient concurrent queue implementations in the
java.util.concurrent package with the BlockingQueue interface. Rather than
reinventing the wheel with its own concurrent queue implementations, Scala adopts these
concurrent queues as part of its concurrency utilities and it does not currently have a
dedicated trait for blocking queues.

The BlockingQueue interface contains several versions of the basic concurrent queue
operations, each with slightly different semantics. Different variants of their enqueue,
dequeue, and inspect-next methods are summarized in the following table. The inspect,
dequeue, and enqueue versions are called element, remove, and add in the first column;
they throw an exception when the queue is empty or full. Methods such as poll and offer
return special values such as null or false. Timed versions of these methods block the
caller for a specified duration before returning an element or a special value, and blocking
methods block the calling thread until the queue becomes non-empty or non-full.

Operation Exception Special value Timed Blocking

Dequeue remove(): T poll(): T poll(t: Long, u:
 TimeUnit): T

take(): T

Enqueue add(x: T) offer(x: T):
 Boolean

offer(x: T, t: Long,
 u: TimeUnit)

put(x: T)

Inspect element: T peek: T N/A N/A[
in “Learning Concurrent

Programming in Scala”, pg. 90

]

Nelma Moreira & José Proença Concurrent (mutable) collections 25 / 36

Back to Example 5: logging in our concurrent filesystem

We will compile a queue of messages when logging messages in our file system
class FileSystem (...) {

...
private val messages = new LinkedBlockingQueue[String]
val logger = new Thread {

setDaemon(true)
override def run() = while (true) log(messages.take())

}
logger.start()
def logMessage(msg: String): Unit = messages.offer(msg)

}

...
val fileSystem = new FileSystem(".") // to be defined later
fileSystem.logMessage("Testing␣log!")

Nelma Moreira & José Proença Concurrent (mutable) collections 26 / 36

Note on iterators

• concurrentQueue.iterator
• can produce inconsistent results
• while traversing and modifying, the iterator can be updated
• (heavier) exceptions create a copy when producing an iterator

Nelma Moreira & José Proença Concurrent (mutable) collections 27 / 36

Example 5: files as a Map in our FileSystem

import scala.collection.convert.decorateAsScala._
import java.io.File
import org.apache.commons.io.FileUtils // needs " commons -io" in build . sbt

class FileSystem(val root: String) {
val rootDir = new File(root)
val files: concurrent.Map[String , Entry] =

new ConcurrentHashMap ().asScala
for (f <- FileUtils.iterateFiles(rootDir , null , false).asScala)

files.put(f.getName , new Entry(false))

...
}

Nelma Moreira & José Proença Concurrent (mutable) collections 28 / 36

Deleting a file

Recall the prepareForDelete(entry)

...
def deleteFile(filename: String): Unit = {

files.get(filename) match {
case None =>

logMessage(s"Path␣’$filename ’␣does␣not␣exist!")
case Some(entry) if entry.isDir =>

logMessage(s"Path␣’$filename ’␣is␣a␣directory!")
case Some(entry) => execute {

if (prepareForDelete (entry))
if (FileUtils. deleteQuietly(new File(filename)))

files.remove(filename)
}

}
}

Nelma Moreira & José Proença Concurrent (mutable) collections 29 / 36

Some complex linearizable methods of concurrent Map

Traditional Building Blocks of Concurrency

[95]

If the deleteFile method finds that the concurrent map contains the file with the given
name, it calls the execute method to asynchronously delete it, as we prefer not to block the
caller thread. The concurrent task, started by the execute invocation, calls the
prepareForDelete method. If the prepareForDelete method returns true, then it is
safe to call the deleteQuietly method from the Commons IO library. This method
physically removes the file from the disk. If the deletion is successful, the file entry is
removed from the files map. We create a new file called test.txt and use it to test the
deleteFile method. We prefer not to experiment with the build definition file. The
following code shows the deletion of the file:

fileSystem.deleteFile("test.txt")

The second time we run this line, our logger thread from before complains that the file does
not exist. A quick check in our file manager reveals that the test.txt file is no longer
there.

The concurrent.Map trait also defines several complex linearizable methods. Recall that
complex linearizable operations involve multiple reads and writes. In the context of
concurrent maps, methods are complex linearizable operations if they involve multiple
instances of the get and put methods, but appear to get executed at a single point in time.
Such methods are a powerful tool in our concurrency arsenal. We have already seen that
volatile reads and writes do not allow us to implement the getUniqueId method; we need
the compareAndSet method for that. Similar methods on concurrent maps have
comparable advantages. Different atomic methods on atomic maps are summarized in the
following table. Note that, unlike the CAS instruction, these methods use structural equality
to compare keys and values, and they call the equals method.

Signature Description

putIfAbsent (k: K, v: V):
 Option[V]

This atomically assigns the value v to the key k if k is not in the
map. Otherwise, it returns the value associated with k.

remove (k: K, v: V):
 Boolean

This atomically removes the key k if it is associated to the value
equal to v and returns true if successful.

replace (k: K, v: V):
 Option[V]

This atomically assigns the value v to the key k and returns the
value previously associated with k.

replace (k: K, ov: V, nv:
V):
 Boolean

This atomically assigns the key k to the value nv if k was
previously associated with ov and returns true if successful.

 [in “Learning Concurrent Programming in Scala”, pg. 95]
• These use “equals” instead of the

reference (which CAS does)
• Avoid null as key or valye (often

used as special values)

• Methods +=, -=, put, update, get,
apply, remove are (non-complex)
linearizable

Nelma Moreira & José Proença Concurrent (mutable) collections 30 / 36

Wrapping up our Filesystem
(Example 5)

Copying in our Filesystem

Recall our broken aquireCopy/releaseCopy methods (ABA problem) – slide19
@tailrec
private def acquire(entry: Entry): Boolean = {

val s0 = entry.state.get
s0 match {

case _: Creating | _: Deleting =>
logMessage("File␣inaccessible ,␣cannot␣copy."); false

case i: Idle =>
if (entry.state. compareAndSet(s0 , new Copying (1))) true
else acquire(entry)

case c: Copying =>
if (entry.state. compareAndSet(s0 , new Copying(c.n+1))) true
else acquire(entry)

}
}

Nelma Moreira & José Proença Wrapping up our Filesystem (Example 5) 31 / 36

Copying in our Filesystem

Same CAS retry-approach for releasing.
@tailrec
private def release(entry: Entry): Unit = {

val s0 = entry.state.get
s0 match {

case c: Creating =>
if (!entry.state. compareAndSet(s0 , new Idle)) release(entry)

case c: Copying =>
val nstate = if (c.n == 1) new Idle else new Copying(c.n-1)
if (!entry.state. compareAndSet(s0 , nstate)) release(entry)

}
}

Nelma Moreira & José Proença Wrapping up our Filesystem (Example 5) 32 / 36

Copying in our Filesystem

Finally: wrapper for copying a file.
def copyFile(src: String , dest: String): Unit = {

files.get(src) match {
case Some(srcEntry) if !srcEntry.isDir => execute {

if (acquire(srcEntry)) try {
val destEntry = new Entry(isDir = false)
destEntry.state.set(new Creating)
if (files.putIfAbsent(dest , destEntry) == None) try {

FileUtils.copyFile(new File(src), new File(dest))
} finally release(destEntry)

} finally release(srcEntry)
}

} }

Nelma Moreira & José Proença Wrapping up our Filesystem (Example 5) 33 / 36

Creating and handling processes

Beyond JVM

• So far: run in a single JVM
• Now: run processes outside JVM
• Why:

• Some programs do not exist in Scala/Java
• Want to sandbox untrusted code
• Performance (running independent code)

• Using the scala.sys.process package

Nelma Moreira & José Proença Creating and handling processes 34 / 36

Beyond JVM

• So far: run in a single JVM
• Now: run processes outside JVM
• Why:

• Some programs do not exist in Scala/Java

• Want to sandbox untrusted code
• Performance (running independent code)

• Using the scala.sys.process package

Nelma Moreira & José Proença Creating and handling processes 34 / 36

Beyond JVM

• So far: run in a single JVM
• Now: run processes outside JVM
• Why:

• Some programs do not exist in Scala/Java
• Want to sandbox untrusted code

• Performance (running independent code)

• Using the scala.sys.process package

Nelma Moreira & José Proença Creating and handling processes 34 / 36

Beyond JVM

• So far: run in a single JVM
• Now: run processes outside JVM
• Why:

• Some programs do not exist in Scala/Java
• Want to sandbox untrusted code
• Performance (running independent code)

• Using the scala.sys.process package

Nelma Moreira & José Proença Creating and handling processes 34 / 36

Beyond JVM

• So far: run in a single JVM
• Now: run processes outside JVM
• Why:

• Some programs do not exist in Scala/Java
• Want to sandbox untrusted code
• Performance (running independent code)

• Using the scala.sys.process package

Nelma Moreira & José Proença Creating and handling processes 34 / 36

Using processes - examples

import scala.sys.process._
object ProcessRun extends App {

val command = "ls"
val exitcode = command .! // run process (with side effects)
log(s"command␣exited␣with␣status␣$exitcode") }

def lineCount(filename: String): Int = {
val output = s"wc␣$filename".!! // run and retreive stdout
output.trim.split("␣").head.toInt }

object ProcessAsync extends App {
val lsProcess = "ls␣-R␣/".run() // run and returns a Process object
Thread.sleep (1000)
log("Timeout␣-␣killing␣ls!")
lsProcess.destroy () } // kill a slow process

https://www.scala-lang.org/api/2.13.x/scala/sys/process/ProcessBuilder.html
Nelma Moreira & José Proença Creating and handling processes 35 / 36

https://www.scala-lang.org/api/2.13.x/scala/sys/process/ProcessBuilder.html

Wrapping up “concurrency blocks”

• executor.execute(...)

• lock-free programming with atomic
variables

• av.compareAndSet(...)

• ABA problem
• Lazy values & “lazy” objects
• java.util.concurrent.BlockingQueue

• scala.collection.concurrent.Map

• weakly consistent iterators
• custom concurrent data structures

• Filesystem example
• Processes outside JVM

Next
• Futures and Promises
• Data-Parallel Collections
• Reactive Programming

(Concurrently)
• Software Transactional Memory
• Actors

Nelma Moreira & José Proença Creating and handling processes 36 / 36

Wrapping up “concurrency blocks”

• executor.execute(...)

• lock-free programming with atomic
variables

• av.compareAndSet(...)

• ABA problem
• Lazy values & “lazy” objects
• java.util.concurrent.BlockingQueue

• scala.collection.concurrent.Map

• weakly consistent iterators
• custom concurrent data structures

• Filesystem example
• Processes outside JVM

Next
• Futures and Promises
• Data-Parallel Collections
• Reactive Programming

(Concurrently)
• Software Transactional Memory
• Actors

Nelma Moreira & José Proença Creating and handling processes 36 / 36

	Overview
	Existing thread pools in Scala
	Lock-free programming
	Lazy values
	Concurrent (mutable) collections
	Wrapping up our Filesystem (Example 5)
	Creating and handling processes

