
3. Concurrency in Java and its memory model

Nelma Moreira & José Proença
Concurrent programming (CC3040) 2023/2024

CISTER – U.Porto, Porto, Portugal https://fm-dcc.github.io/pc2324

https://fm-dcc.github.io/pc2324


Overview



We are here

Blocks of sequential code running concurrently and sharing memory:
• What is Scala?
• Concurrency in Java and its memory model
• Basic concurrency blocks and libraries
• Futures and promises
• Actor model

Nelma Moreira & José Proença Overview 2 / 39



Traditional concurrency

Synchronisation
- Coordination of multiple executions in
a concurrent system
- Mechanisms to order concurrent
executions
- Mechanisms to exchange information

Exchanging information
- Concurrent programs: shared memory
communication
- Distributed programs: message passing
communication

Nelma Moreira & José Proença Overview 3 / 39



Processes and threads
Concurrency on the JVM and the Java Memory Model

[ 32 ]

Based on the preceding discussion about the relationships between processes and threads, a
summary of a typical OS is depicted in the following simplified diagram:

The preceding diagram shows an OS in which multiple processes are executing
simultaneously. Only the first three processes are shown in the illustration. Each process is
assigned a fixed region of computer memory. In practice, the memory system of the OS is
much more complex, but this approximation serves as a simple mental model.

Each of the processes contains multiple OS threads, two of which are shown for each
process. Currently, Thread 1 of Process 2 is executing on CPU Core 1, and Thread 2 of
Process 3 is executing on CPU Core 2. The OS periodically assigns different OS threads to
each of the CPU cores to allow the computation to progress in all the processes.

Having shown the relationship between the OS threads and processes, we turn our
attention to see how these concepts relate to the Java Virtual Machine (JVM), the runtime
on top of which Scala programs execute.

 

[
in “Learning Concurrent

Programming in Scala”, pg. 32

]

Starting a new JVM instance always creates
only one process.

In that process, multiple threads can run
simultaneously.

Unlike runtimes (e.g. Python), the JVM:
does not implement its custom threads,
maps each Java thread to an OS thread

Nelma Moreira & José Proença Overview 4 / 39



Managing threads



Current thread

object ThreadsMain extends App {
val t: Thread =

Thread.currentThread
val name = t.getName
println(s"I␣am␣the␣thread␣$name")

}

Using SBT, this prints:
[info] I am the thread sbt-bg-threads-1

In SBT do “set fork := true”
It will then it prints:
[info] I am the thread main

Nelma Moreira & José Proença Managing threads 5 / 39



Creating threads

object ThreadsCreation extends App {
class MyThread extends Thread {

override def run(): Unit = {
println("New␣thread␣running.")

}
}
val t = new MyThread
t.start ()
t.join ()
println("New␣thread␣joined.")

}

start eventually causes
run to execute in a new thread;

the OS decides when;

join puts the main thread in a waiting
state, and allows the OS to re-assign the
processor.

Nelma Moreira & José Proença Managing threads 6 / 39



Concurrency on the JVM and the Java Memory Model

[ 35 ]

Next, the main thread starts t by calling the start method. Calling the start method
eventually results in executing the run method from the new thread. First, the OS is notified
that t must start executing. When the OS decides to assign the new thread to some
processor, this is largely out of the programmer's control, but the OS must ensure that this
eventually happens. After the main thread starts the new thread t, it calls its join method.
This method halts the execution of the main thread until t completes its execution. We say
that the join operation puts the main thread into the waiting state until t terminates.
Importantly, the waiting thread relinquishes its control over the processor, and the OS can
assign that processor to some other thread.

Waiting threads notify the OS that they are waiting for some condition
and cease spending CPU cycles, instead of repetitively checking that
condition.

In the meantime, the OS finds an available processor and instructs it to run the child thread.
The instructions that a thread must execute are specified by overriding its run method. The
t instance of the MyThread class starts by printing the “New thread running." text to the
standard output and then terminates. At this point, the operating system is notified that t is
terminated and eventually lets the main thread continue the execution. The OS then puts
the main thread back into the running state, and the main thread prints "New thread
joined.". This is shown in the following diagram:

[in “Learning Concurrent Programming in Scala”, pg. 35]

Nelma Moreira & José Proença Managing threads 7 / 39



Simpler thread creation

def thread(body: =>Unit): Thread = {
val t = new Thread {

override def run() = body
}
t.start ()
t

}

Using the thread function
object ThreadsSleep extends App {

val t = thread {
Thread.sleep (1000)
log("New␣thread␣running.")
Thread.sleep (1000)
log("Still␣running.")
Thread.sleep (1000)
log("Completed.")

}
t.join ()
log("New␣thread␣joined.")

}

Nelma Moreira & José Proença Managing threads 8 / 39



Simpler thread creation

def thread(body: =>Unit): Thread = {
val t = new Thread {

override def run() = body
}
t.start ()
t

}

Using the thread function
object ThreadsSleep extends App {

val t = thread {
Thread.sleep (1000)
log("New␣thread␣running.")
Thread.sleep (1000)
log("Still␣running.")
Thread.sleep (1000)
log("Completed.")

}
t.join ()
log("New␣thread␣joined.")

}

Nelma Moreira & José Proença Managing threads 8 / 39



[in https://static.javatpoint.com/core/images/life-cycle-of-a-thread.png]

Nelma Moreira & José Proença Managing threads 9 / 39



Nondeterministic thread execution

• “New thread” printed always at the
end

• Other prints not always in the same
order – nondeterministic execution

• Common in concurrent applications –
what makes it so hard

• Note: join also forces all memory
writes from the threads before
proceeding

object ThreadsNondeterminism
extends App {

val t = thread {
log("New␣thread␣running.")

}
log("...")
log("...")
t.join ()
log("New␣thread␣joined.")

}

Nelma Moreira & José Proença Managing threads 10 / 39



Control of the execution order



Atomic Execution

• join provides guarantees that other threads terminated
• Not enough – we may want to inform other treads without terminating

Example 1: shared counter for unique IDs
object ThreadsUnprotectedUid extends App {

var uidCount = 0L
def getUniqueId () = {

val freshUid = uidCount + 1
uidCount = freshUid
freshUid

}

What can go wrong?

Nelma Moreira & José Proença Control of the execution order 11 / 39



Atomic Execution

...
def printUniqueIds(n: Int): Unit = {

val uids = for (i<- 0 until n)
yield getUniqueId ()

log(s"Generated␣uids:␣$uids")
}
val t = thread { printUniqueIds (5) }
printUniqueIds (5)
t.join ()
...

object ThreadsNondeterminism
extends App {

val t = thread {
log("New␣thread␣running.")

}
log("...")
log("...")
t.join ()
log("New␣thread␣joined.")

}

What do you expect?

Nelma Moreira & José Proença Control of the execution order 12 / 39



Atomic Execution

...
def printUniqueIds(n: Int): Unit = {

val uids = for (i<- 0 until n)
yield getUniqueId ()

log(s"Generated␣uids:␣$uids")
}
val t = thread { printUniqueIds (5) }
printUniqueIds (5)
t.join ()
...

object ThreadsNondeterminism
extends App {

val t = thread {
log("New␣thread␣running.")

}
log("...")
log("...")
t.join ()
log("New␣thread␣joined.")

}

Race Condition
when the output of a concurrent program depends on how the statements are
scheduled.

Nelma Moreira & José Proença Control of the execution order 12 / 39



Updating counter in parallel

val freshUid = uidCount + 1 ; uidCount = freshUid ; freshUid

Concurrency on the JVM and the Java Memory Model

[ 40 ]

  def printUniqueIds(n: Int): Unit = {
    val uids = for (i<- 0 until n) yield getUniqueId()
    log(s"Generated uids: $uids")
  }
  val t = thread { printUniqueIds(5) }
  printUniqueIds(5)
  t.join()
}

Running this application several times reveals that the identifiers generated by the two
threads are not necessarily unique; the application prints Vector(1, 2, 3, 4, 5) and
Vector(1, 6, 7, 8, 9) in some runs, but not in the others! The outputs of the program
depend on the timing at which the statements in separate threads get executed.

A race condition is a phenomenon in which the output of a concurrent
program depends on the execution schedule of the statements in the
program.

A race condition is not necessarily an incorrect program behavior. However, if some
execution schedule causes an undesired program output, the race condition is considered to
be a program error. The race condition from the previous example is a program error,
because the getUniqueId method is not atomic. The t thread and the main thread
sometimes concurrently calls getUniqueId. In the first line, they concurrently read the
value of uidCount, which is initially 0, and conclude that their own freshUid variable
should be 1. The freshUid variable is a local variable, so it is allocated on the thread stack;
each thread sees a separate instance of that variable. At this point, the threads decide to
write the value 1 back to uidCount in any order, and both return a non-unique identifier 1.
This is illustrated in the following figure:

[in “Learning Concurrent Programming in Scala”, pg. 40]

Nelma Moreira & José Proença Control of the execution order 13 / 39



“Synchronized” to the rescue

def getUniqueId () =
this.synchronized {

val freshUid = uidCount + 1
uidCount = freshUid
freshUid

}

synchronized is:
• a fundamental Scala/Java construct

for atomic executions
• can be called in any object (or

instance of a class)
• ensures atomic execution wrt the

object
• we say obj.synchronized

• acquires the lock/monitor of obj at
the start

• releases the lock/monitor of obj at
the end

Nelma Moreira & José Proença Control of the execution order 14 / 39



Updating counter in parallel atomically

Concurrency on the JVM and the Java Memory Model

[ 41 ]

There is a mismatch between the mental model that most programmers inherit from
sequential programming and the execution of the getUniqueId method when it is run
concurrently. This mismatch is grounded in the assumption that getUniqueId executes
atomically. Atomic execution of a block of code means that the individual statements in that
block of code executed by one thread cannot interleave with those statements executed by
another thread. In atomic execution, the statements can only be executed all at once, which
is exactly how the uidCount field should be updated. The code inside the getUniqueId
function reads, modifies, and writes a value, which is not atomic on the JVM. An additional
language construct is necessary to guarantee atomicity. The fundamental Scala construct
that allows this sort of atomic execution is called the synchronized statement, and it can
be called on any object. This allows us to define getUniqueId as follows:

def getUniqueId() = this.synchronized {
  val freshUid = uidCount + 1
  uidCount = freshUid
  freshUid
}

The synchronized call ensures that the subsequent block of code can only execute if there
is no other thread simultaneously executing this synchronized block of code, or any other
synchronized block of code called on the same this object. In our case, the this object is
the enclosing singleton object, ThreadsUnprotectedUid, but in general, this can be an
instance of the enclosing class or trait.

Two concurrent invocations of the getUniqueId method are shown in the following figure:

[in “Learning Concurrent Programming in Scala”, pg. 41]
Nelma Moreira & José Proença Control of the execution order 15 / 39



[in https://static.javatpoint.com/core/images/life-cycle-of-a-thread.png]

Nelma Moreira & José Proença Control of the execution order 16 / 39



Reordering

• using the synchronized statement has some (not too large) overhead
• not using synchronized can easily lead to errors, even if all seems correct

Find the bug in the next slide...

Nelma Moreira & José Proença Control of the execution order 17 / 39



Find the bug

object ThreadSharedStateAccessReordering extends App {
for (i <- 0 until 100000) {

var a = false
var b = false
var x = -1
var y = -1
val t1 = thread {

a = true
y = if (b) 0 else 1

}
val t2 = thread {

b = true
x = if (a) 0 else 1

}
t1.join ()
t2.join ()
assert (!(x==1 && y==1), s"x=$x,␣y=$y")

}
}

Nelma Moreira & José Proença Control of the execution order 18 / 39



Reordering within threads

• The previous code can raise an error: both x and y can become 1!
• JVM can reorder statements in a thread when they seem to be independent.
• Because some processors do not always execute instructions in the expected order,

to increase performance.
• (Known as “weak memory model”)
• A synchronized block would solve this:

• also enclosing each assignment in a synchronized block
• synchronized sets up a memory barrier

Nelma Moreira & José Proença Control of the execution order 19 / 39



Locks and synchronization

• every object has a lock
• a running thread can aquire multiple locks from different objects

Example 2: Logging Bank Transfers
object SynchronizedNesting extends App {

import scala.collection._

private val transfers = mutable.ArrayBuffer[String ]()
def logTransfer(name: String , n: Int) = transfers.synchronized {

transfers += s"transfer␣to␣account␣’$name’␣=␣$n"
}
class Account(val name: String , var money: Int)
def add(account: Account , n: Int) = account.synchronized {

account.money += n
if (n > 10) logTransfer(account.name , n)

}
...

}
Nelma Moreira & José Proença Control of the execution order 20 / 39



Locks and synchronization

private val transfers = mutable.ArrayBuffer[String ]()
def logTransfer(name: String , n: Int) = transfers.synchronized {

transfers += s"transfer␣to␣account␣’$name’␣=␣$n"
}
class Account(val name: String , var money: Int)
def add(account: Account , n: Int) = account.synchronized {

account.money += n
if (n > 10) logTransfer(account.name , n)

}

val jane = new Account("Jane", 100)
val john = new Account("John", 200)
val t1 = thread { add(jane , 5) }
val t2 = thread { add(john , 50) }
val t3 = thread { add(jane , 70) } // will not corrupt Jane ’s account
t1.join (); t2.join (); t3.join ()
log(s"---␣transfers␣ ---\n$transfers")

Nelma Moreira & José Proença Control of the execution order 21 / 39



Deadlocks



Deadlocks – the dark side of locks

Deadlock
when two or more executions wait for each other before proceeding

• Studied in the first module with prof. Nelma Moreira
• Often caused by locks that are not released at the right time

object SynchronizedDeadlock extends App {
import SynchronizedNesting.Account
def send(a: Account , b: Account , n: Int) = a.synchronized {

b.synchronized {
a.money -= n
b.money += n

}
}
... // can this go wrong ?

}

Nelma Moreira & José Proença Deadlocks 22 / 39



Deadlocks – the dark side of locks

def send(a: Account , b: Account , n: Int) = a.synchronized {
b.synchronized {

a.money -= n
b.money += n

}
}

val l = new Account("Lucy", 1000)
val j = new Account("Jim", 2000)
val t1 = thread { for (i<- 0 until 100) send(l, j, 1) }
val t2 = thread { for (i<- 0 until 100) send(j, l, 1) }
t1.join (); t2.join ()
log(s"a␣=␣${a.money},␣b␣=␣${b.money}")

It works but... it can deadlock

Nelma Moreira & José Proença Deadlocks 23 / 39



Deadlocks – the dark side of locks

def send(a: Account , b: Account , n: Int) = a.synchronized {
b.synchronized {

a.money -= n
b.money += n

}
}

val l = new Account("Lucy", 1000)
val j = new Account("Jim", 2000)
val t1 = thread { for (i<- 0 until 100) send(l, j, 1) }
val t2 = thread { for (i<- 0 until 100) send(j, l, 1) }
t1.join (); t2.join ()
log(s"a␣=␣${a.money},␣b␣=␣${b.money}")

It works but...

it can deadlock

Nelma Moreira & José Proença Deadlocks 23 / 39



Deadlocks – the dark side of locks

def send(a: Account , b: Account , n: Int) = a.synchronized {
b.synchronized {

a.money -= n
b.money += n

}
}

val l = new Account("Lucy", 1000)
val j = new Account("Jim", 2000)
val t1 = thread { for (i<- 0 until 100) send(l, j, 1) }
val t2 = thread { for (i<- 0 until 100) send(j, l, 1) }
t1.join (); t2.join ()
log(s"a␣=␣${a.money},␣b␣=␣${b.money}")

It works but... it can deadlock

Nelma Moreira & José Proença Deadlocks 23 / 39



Possible fix: fix order

• always acquire locks in the same order
• need a total order on locks
• we can use the getUniqueId (Example 1)

import SynchronizedProtectedUid.getUniqueId
class Account(val name: String , var money: Int) {

val uid = getUniqueId ()
}

def send(a1: Account , a2: Account , n: Int) {
def adjust () {

a1.money -= n
a2.money += n

}
if (a1.uid < a2.uid) a1.synchronized{ a2.synchronized{ adjust () }}
else a2.synchronized{ a1.synchronized{ adjust () }}

}

Nelma Moreira & José Proença Deadlocks 24 / 39



Possible fix: fix order

• always acquire locks in the same order
• need a total order on locks
• we can use the getUniqueId (Example 1)

import SynchronizedProtectedUid.getUniqueId
class Account(val name: String , var money: Int) {

val uid = getUniqueId ()
}

def send(a1: Account , a2: Account , n: Int) {
def adjust () {

a1.money -= n
a2.money += n

}
if (a1.uid < a2.uid) a1.synchronized{ a2.synchronized{ adjust () }}
else a2.synchronized{ a1.synchronized{ adjust () }}

}

Nelma Moreira & José Proença Deadlocks 24 / 39



Guarded blocks



Guarded blocks

Guarded block (for us)
a block of code that waits for a condition before running in a thread

Example 3: Thread pool with a queue of tasks
• Creating new threads in Java is expensive and avoidable
• Usually we re-use threads, by maintaining a set of waiting threads
• This set is call a thread pool

• Scala already provides thread pools
• We first create our own

Nelma Moreira & José Proença Guarded blocks 25 / 39



import scala.collection._
object SynchronizedBadPool extends App {

// our set of tasks
private val tasks = mutable.Queue [()=>Unit ]()

// our single working thread
val worker = new Thread {

def poll(): Option [()=>Unit] =
tasks.synchronized {

if (tasks.nonEmpty) Some(tasks.dequeue ())
else None

}
// keep on trying to run forever !
override def run() = while (true)

poll() match {
case Some(task) => task()
case None =>

}
}

// starting the worker as
a daemon

worker.setName("Worker")
worker.setDaemon(true)
worker.start()

def asynchr(body: =>Unit) =
tasks.synchronized {

tasks.enqueue (()=>body)
}

asynchr{ log("Hello") }
asynchr{ log("␣world!")}
Thread.sleep (5000)

}

Nelma Moreira & José Proença Guarded blocks 26 / 39



Note on daemon threads

Daemon thread
• not the default
• have lower priority
• terminated automatically when JVM terminates
• in other words, do not prevent the JVM from terminating
• (the JVM terminates when ‘normal’ tasks terminate)

Nelma Moreira & José Proença Guarded blocks 27 / 39



Bad busy-waiting

Busy-waiting is bad
• needlessly uses processor power (and drains the battery)
• after executing the previous code the worker will keep on running (unless you set

in SBT set fork := true,)
• in general, we want the worker to enter a waiting state

Nelma Moreira & José Proença Guarded blocks 28 / 39



Avoiding busy-waiting

synchronized + wait + notify
• these are methods that every Java/Scala object has
• wait:

• needs the lock
• puts the thread in a waiting state
• releases the lock until activation

• notify:
• needs the lock
• activates all waiting threads

• Note that the JVM can decide to call wait on its own – spurious wakeups –
needing to re-enter the wait

Nelma Moreira & José Proença Guarded blocks 29 / 39



Avoiding busy-waiting

synchronized + wait + notify
• these are methods that every Java/Scala object has
• wait:

• needs the lock
• puts the thread in a waiting state
• releases the lock until activation

• notify:
• needs the lock
• activates all waiting threads

• Note that the JVM can decide to call wait on its own – spurious wakeups –
needing to re-enter the wait

Nelma Moreira & José Proença Guarded blocks 29 / 39



Wait-notify example

object SynchronizedGuardedBlocks extends App {
val lock = new AnyRef
var message: Option[String] = None
val greeter = thread {

lock.synchronized {
while (message == None) lock.wait () // non - busy waiting for a message
log(message.get) // it will eventually log !

}
}
lock.synchronized {

message = Some("Hello!")
lock.notify () // awakes the ( possibly ) locked thread

}
greeter.join ()

}

Nelma Moreira & José Proença Guarded blocks 30 / 39



Example 3 – without busy-waiting

import scala.collection._
object SynchronizedPool extends App {

private val tasks = mutable.Queue [()=>Unit ]()

object Worker extends Thread {
setDaemon(true)
def poll() = tasks.synchronized {

while (tasks.isEmpty) tasks.wait ()
// now using wait

tasks.dequeue ()
}
override def run() = while (true) {

val task = poll()
task()

}
}

Worker.start()

def asynchr(body: =>Unit) =
tasks.synchronized {

tasks.enqueue (()=>body)
// now notifying
tasks.notify ()

}

asynchr{ log("Hello") }
asynchr{ log("␣world!")}
Thread.sleep (500)

}

Nelma Moreira & José Proença Guarded blocks 31 / 39



Interrupting threads – Thread.interrupt()

• Our Worker can run forever (while-true)
• Terminates when the JVM terminates (daemon)
• Worker can be terminated earlier while waiting

• Worker.interrupt()
• triggers an InterruptedException that can be handled
• if it was not waiting, then no exception is raised
• instead a flag Worker.isInterrupted becomes true
• needed if the thread does not awake with notify (e.g., it is doing blocking I/O)

Nelma Moreira & José Proença Guarded blocks 32 / 39



Interrupting threads – alternative with graceful shutdown

object Worker extends Thread {
var terminated = false
// " manually " terminate when asked
def poll(): Option [() => Unit] = tasks.synchronized {

while (tasks.isEmpty && !terminated) tasks.wait ()
if (! terminated) Some(tasks.dequeue ()) else None

}

import scala.annotation.tailrec
@tailrec override def run() = poll() match {

case Some(task) => task(); run()
case None =>

}
// " manually " ask to terminate
def shutdown () = tasks.synchronized {

terminated = true
tasks.notify ()

}
}

Nelma Moreira & José Proença Guarded blocks 33 / 39



Volatile variables – Alternative to lock.synchronized

• using the @volatile annotation

• can be [atomically read] and [atomically modified]
• mostly used as status flag
• are never reordered in a thread
• writes are immediately visible to other threads
• very cheap to read
• not enough in many situations (e.g., getUniqueID)
• enough for previous example – Slide 18

Nelma Moreira & José Proença Guarded blocks 34 / 39



Example 4 – Batman

object Volatile extends App {
class Page(val txt: String , var position: Int)

val pages = for (i<- 1 to 5) yield
new Page("Na" * (100 - 20 * i) + "␣Batman!", -1)

@ volatile var found = false
for (p <- pages) yield thread {

var i = 0
while (i < p.txt.length && !found)

if (p.txt(i) == ’!’) {
p.position = i
found = true

} else i += 1
}
while (! found) {}
log(s"results:␣${pages.map(_.position)}")

}

Nelma Moreira & José Proença Guarded blocks 35 / 39



The Java Memory Model overview



Happens-before relation

action α happens-before (HB) action β

means action β sees the memory writes of action α

• Program order: α in a thread HB every subsequent β in that program and thread
• Monitor locking: unlocking HB every subsequent locking (of the same lock)
• Volatile fields: writing to a volatile field HB every of its subsequent read
• Thread start: calling thrd.start() HB any actions of thrd

• Thread termination: α in a thread HB a join() on that thread.
• Transitivity: if α HB β and β HB γ, then α HB γ

Data race: when a write to memory does not happen-before its intended read.

Nelma Moreira & José Proença The Java Memory Model overview 36 / 39



Happens-before relation

action α happens-before (HB) action β

means action β sees the memory writes of action α

• Program order: α in a thread HB every subsequent β in that program and thread
• Monitor locking: unlocking HB every subsequent locking (of the same lock)
• Volatile fields: writing to a volatile field HB every of its subsequent read
• Thread start: calling thrd.start() HB any actions of thrd

• Thread termination: α in a thread HB a join() on that thread.
• Transitivity: if α HB β and β HB γ, then α HB γ

Data race: when a write to memory does not happen-before its intended read.

Nelma Moreira & José Proença The Java Memory Model overview 36 / 39



Immutable objects and final fields

class Foo( final val a: Int ,
val b: Int ,

c: Int)
// Encoding as Java :
class Foo {

final private int a$;
final private int b$;
final private int c$;
final public int a()

{ return a$; }
public int b()

{ return b$; }
public Foo(int a,

int b,
int c) {

{ a$ = a; b$ = b; c$ = c; }
}

• Final fields: cannot be overridden
• val: cannot be updated
• vals are final
• Objects with only final fields

• do not need synchronisation when shared
(after constructed)

• Some collections are immutable (e.g. List),
but contain non-final fields

• need synchronisation when shared

Nelma Moreira & José Proença The Java Memory Model overview 37 / 39



Summary of operators

• Thread.sleep

• thr.start

• thr.join

• lock.synchronized

• lock.wait

• lock.notify

• thr.interrupt()

• thr.isInterrupted

• @volatile var x

Nelma Moreira & José Proença The Java Memory Model overview 38 / 39



Recall the Life-cycle of a thread

[in https://static.javatpoint.com/core/images/life-cycle-of-a-thread.png]

Nelma Moreira & José Proença The Java Memory Model overview 39 / 39


	Overview
	Managing threads
	Control of the execution order
	Deadlocks
	Guarded blocks
	The Java Memory Model overview

