3. Concurrency in Java and its memory model

Nelma Moreira & José Proenca
Concurrent programming (CC3040) 2023/2024

CISTER - U.Porto, Porto, Portugal https://fm-dcc.github.io/pc2324

[WPORTO B Ty ooy S

FACULDADE DE CIENCIAS ne & Embedc
K UNIVERSIDADE DO PORTO UNIVERSIDADE DO PORTO Computing Systems

https://fm-dcc.github.io/pc2324

Overview

Blocks of sequential code running concurrently and sharing memory:
What is Scala?

Concurrency in Java and its memory model
Basic concurrency blocks and libraries
Futures and promises

Actor model

Overview

2/39

Synchronisation Exchanging information

- Coordination of multiple executions in - Concurrent programs: shared memory
a concurrent system communication

- Mechanisms to order concurrent - Distributed programs: message passing
executions communication

- Mechanisms to exchange information

© NemaMoeia & JoséProemga Overview 33

Processes and threads

CPU Core 1 CPU Core 2
Process 1 Process 2 Process 3
| Thread 1 | { Thread 1 | | Thread 1 |
| Thread 2 | | Thread 2 | | Thread 2 } -
Memory Memory Memory
reserved reserved reserved M emo ry
for Process 1 for Process 2 ifor Process 3i

Nelma Moreira & José Proenca

e
Starting a new JVM instance always creates

only one process.

In that process, multiple threads can run

simultaneously.

Unlike runtimes (e.g. Python), the JVM:
does not implement its custom threads,
maps each Java thread to an OS thread

Overview 4

Managing threads

fc

object ThreadsMain extends App {
val t: Thread =
Thread.currentThread
val name = t.getName
println(s"I am the thread $name")

Using SBT, this prints:
[info] I am the thread sbt-bg-threads-1

In SBT do “set fork := true’”
It will then it prints:

[info] I am the thread main

Managing threads 5 /39

object ThreadsCreation extends App {
class MyThread extends Thread {
override def run(): Unit = {
println("New, thread,running.")
}
}
val t = new MyThread
t.start ()
t.join()
println("New thread, joined.")

3

start eventually causes

run to execute in a new thread;
the OS decides when;

join puts the main thread in a waiting
state, and allows the OS to re-assign the
processor.

Managing threads 6 /39

main

val t = new MyThread

t.start() _|

t.join()

println(”New thread joined.”)

Nelma Moreira & José Proenca

thread

RUNMNG"

WAITING

RUNNWGk\

.- .-t

println(”New thread running.”)

Managing threads

39

def thread(body: =>Unit): Thread = {
val t = new Thread {
override def run() = body
}
t.start ()
t

© NemaMoeia & JoséProemga Managing threads 830

fc

def thread(body: =>Unit): Thread
val t = new Thread {
override def run() = body
}
t.start ()
t

{

Using the thread function

object ThreadsSleep extends App {

val t = thread {
Thread.sleep (1000)
log("Newythread, running.")
Thread.sleep(1000)
log("Still,running.")
Thread.sleep(1000)
log("Completed.")

¥

t.join ()

log("New,thread joined.")

Managing threads

8/ 39

getting CPU

State()

e
D OO

Active State

o
% K
acqi.rf}@ o

Waiting for notification

Notification acquired

run() exited

Waiting For
CPU

Terminated / Dead

Life Cycle of a Thread

Nelma Moreira & José Proenca Managing threads 9 /39

Nondeterministic thread execution

"New thread" printed always at the
end

Other prints not always in the same

order — nondeterministic execution

Common in concurrent applications —
what makes it so hard

Note: join also forces all memory
writes from the threads before
proceeding

Nelma Moreira & José Proenca

object ThreadsNondeterminism
extends App {
val t = thread {
log("New thread, running.")

}

log("...")
log("...")
t.join()

log("New,thread, joined.")

Managing threads

Control of the execution order

Atomic Execution

= join provides guarantees that other threads terminated

= Not enough — we may want to inform other treads without terminating

Example 1: shared counter for unique IDs

object ThreadsUnprotectedUid extends App {
var uidCount = OL
def getUniqueId() = {
val freshUid = uidCount + 1
uidCount = freshUid
freshUid

What can go wrong?

Nelma Moreira & José Proenca Control of the execution order

39

def printUniqueIds(n: Int): Unit = {

val uids = for (i<- 0 until n)
yield getUniqueId ()

log(s"Generated,uids: $uids")

}

val t = thread { printUniqueIds(5) }

printUniquelIds (5)

t.join()

object ThreadsNondeterminism
extends App {
val t = thread {
log("Newythread, running.")

}

log("...")
log("...")
t.join ()

log("New,thread,joined.")

What do you expect?

Control of the execution order

12 / 39

val uids = for (i<- O until n)
yield getUniqueId ()
log(s"Generated uids: $uids")

}

printUniquelIds (5)
t.join()

def printUniqueIds(n: Int): Unit

val t = thread { printUniqueIds(5) }

object ThreadsNondeterminism
extends App {
val t = thread {
log("New,thread, running.")

}

log("...")
log("...")
t.join()

log("New,thread joined.")

Race Condition

when the output of a concurrent program depends on how the statements are

scheduled.

Control of the execution order

val freshUid = uidCount + 1 ; uidCount = freshUid ; freshUid

main thread t
uidCount: 0
val freshUid = 0 + 1--—f--rommmommeeeees
uidCount: ©
-------------------------- —+-val freshUid = 0 + 1
uidCount: 0
uidCount = 1---fmrooooomommeeenenss
uidCount: 1
------------------------- —+--uidCount =1
uidCount: 1
\/ \

© NemaMoeira & JoséProemga Control of the execution order 1373

def getUniqueId() =
this.synchronized {
val freshUid = uidCount + 1
uidCount = freshUid
freshUid

fc

synchronized is:

= a fundamental Scala/Java construct
for atomic executions

= can be called in any object (or
instance of a class)

= ensures atomic execution wrt the
object
= We Say obj.synchronized
= acquires the lock/monitor of obj at
the start
» releases the lock/monitor of obj at
the end

Control of the execution order 14 / 39

main thread

uidCount:

this.synchronized {
val freshUid = 0 + 1

uidCount =1

uidCount:

--val freshUid

--uidCount = 2

Control of the execution order

=1+1

15 / 39

getting CPU

State()

e
D OO

Active State

o
% K
acqi.rf}@ o

Waiting for notification

Notification acquired

run() exited

Waiting For
CPU

Terminated / Dead

Life Cycle of a Thread

Nelma Moreira & José Proenca Control of the execution order 16 / 39

» using the synchronized statement has some (not too large) overhead

= not using synchronized can easily lead to errors, even if all seems correct

Find the bug in the next slide...

© NemaMoeira & JoséProemga Control of the execution order 17/ 3

object ThreadSharedStateAccessReordering extends App {
for (i <- 0 until 100000) {
var a = false
var b = false
var x = -1
var y = -1
val tl1 = thread {
a = true
y = if (b) 0 else 1
}
val t2 = thread {
b = true
x = if (a) 0 else 1
}
tl.join()
t2.join ()
assert (! (x==1 && y==1), s"x=$x,,y=$y")
}
}

Control of the execution order

18 / 39

Reordering within threads FC

= The previous code can raise an error: both x and y can become 1!
= JVM can reorder statements in a thread when they seem to be independent.

= Because some processors do not always execute instructions in the expected order,
to increase performance.

= (Known as “weak memory model”)

= A synchronized block would solve this:

= also enclosing each assignment in a synchronized block
= synchronized sets up a memory barrier

Nelma Moreira & José Proenca Control of the execution order

19

Locks and synchronization

= every object has a lock

= a running thread can aquire multiple locks from different objects

Example 2: Logging Bank Transfers

object SynchronizedNesting extends App {
import scala.collection._

private val transfers = mutable.ArrayBuffer [Stringl ()
def logTransfer (name: String, n: Int) = transfers.synchronized {
transfers += s"transfer_ togaccount,’$name’ =, $n"
}
class Account(val name: String, var money: Int)
def add(account: Account, n: Int) = account.synchronized {
account .money += n

if (n > 10) logTransfer (account.name, n)

Nelma Moreira & José Proenca Control of the execution order

39

Locks and synchronization

private val transfers = mutable.ArrayBuffer [String] ()
def logTransfer (name: String, n: Int) = transfers.synchronized {
transfers += s"transfer_ toaccount,’$name’ =, $n"

}

class Account(val name: String, var money: Int)

def add(account: Account, n: Int) = account.synchronized {
account.money += n
if (n > 10) logTransfer (account.name, n)

val jane = new Account("Jane", 100)
val john = new Account("John", 200)
val tl1 = thread { add(jane, 5) }
val t2 = thread { add(john, 50) 1}
val t3 = thread { add(jane, 70) }
tl.join(); t2.join(); t3.join()

log(s"---,transfers,---\n$transfers")

Nelma Moreira & José Proenca Control of the execution order

39

Deadlocks

Deadlocks — the dark side of locks FC

Deadlock
when two or more executions wait for each other before proceeding

= Studied in the first module with prof. Nelma Moreira

= Often caused by locks that are not released at the right time

object SynchronizedDeadlock extends App {
import SynchronizedNesting.Account
def send(a: Account, b: Account, n: Int) = a.synchronized {
b.synchronized {
a.money -= n
b.money += n
}
}
}
Deadlocks 22 /39

Nelma Moreira & José Proenca

def send(a: Account, b: Account, n: Int) = a.synchronized {

b.synchronized {

a.money -= n
b.money += n
}
}
val 1 = new Account("Lucy", 1000)
val j = new Account("Jim", 2000)
val tl = thread { for (i<- O until 100) send(l, j, 1) }
val t2 = thread { for (i<- 0 until 100) send(j, 1, 1) }
tl.join(); t2.join()
log(s"ay=y${a.moneyl}, by=,${b.money}")
Deadlocks

23 / 39

b.synchronized {

def send(a: Account, b: Account, n: Int) = a.synchronized {

a.money -= n
b.money += n
}
}
val 1 = new Account("Lucy", 1000)
val j = new Account("Jim", 2000)
val tl = thread { for (i<- O until 100) send(l, j, 1) }
val t2 = thread { for (i<- 0 until 100) send(j, 1, 1) }
t1l.join(); t2.join()
log(s"ay=_${a.money}, by=,${b.moneyl}")
It works but...
e ey P — Do

23 / 39

b.synchronized {
a.money -= n
b.money += n

val 1 = new Account("Lucy", 1000)
val j = new Account("Jim", 2000)

def send(a: Account, b: Account, n: Int) = a.synchronized {

val tl = thread { for (i<- O until 100) send(l, j, 1) }
val t2 = thread { for (i<- 0 until 100) send(j, 1, 1) }
tl.join(); t2.join()
log(s"ay=_${a.money}, by=,${b.moneyl}")
It works but... it can deadlock
Deadlocks

23 / 39

= always acquire locks in the same order

= need a total order on locks
= we can use the getUniqueld (Example 1)

import SynchronizedProtectedUid.getUniquelId
class Account(val name: String, var money: Int) {
val uid = getUniquelId()

© NemaMoeira & JoséProemga Deadlocks

24 /39

Possible fix: fix order

= always acquire locks in the same order
= need a total order on locks

= we can use the getUniqueld (Example 1)

import SynchronizedProtectedUid.getUniqueld
class Account(val name: String, var money: Int) {
val uid = getUniqueId()

def send(al: Account, a2: Account, n: Int) {
def adjust() {

al.money -=n

a2.money += n
}
if (al.uid < a2.uid) al.synchronized{ a2.synchronized{ adjust() }}
else a2.synchronized{ al.synchronized{ adjust() }}

Nelma Moreira & José Proenca Deadlocks

39

Guarded blocks

Guarded block (for us)
a block of code that waits for a condition before running in a thread

Example 3: Thread pool with a queue of tasks
= Creating new threads in Java is expensive and avoidable
= Usually we re-use threads, by maintaining a set of waiting threads

= This set is call a thread pool

= Scala already provides thread pools
= We first create our own

© NemaMoeira & JoséProemga Guarded blocks 5 55

import scala.collection._
object SynchronizedBadPool extends App {

private val tasks = mutable.Queue[()=>Unit]()

val worker = new Thread {
def poll(): Option[()=>Unit] =
tasks.synchronized {
if (tasks.nonEmpty) Some(tasks.dequeue())
else None

}

override def run() = while (true)
poll () match {
case Some (task) => task()
case None =>

worker .setName ("Worker")
worker .setDaemon (true)

worker .start ()

def asynchr (body: =>Unit) =
tasks.synchronized {
tasks.enqueue (()=>body)

asynchr{ log("Hello") 1}
asynchr{ log(",world!")}
Thread.sleep (5000)

Nelma Moreira & José Proenca

Guarded blocks 26

39

Note on daemon threads

Daemon thread

not the default
have lower priority

terminated automatically when JVM terminates

in other words, do not prevent the JVM from terminating

(the JVM terminates when ‘normal’ tasks terminate)

Nelma Moreira & José Proenca

Guarded blocks

39

Busy-waiting is bad
= needlessly uses processor power (and drains the battery)

= after executing the previous code the worker will keep on running (unless you set
in SBT set fork := true,)

= in general, we want the worker to enter a waiting state

© NemaMoeira & JoséProemga Guarded blocks 28 /30

synchronized + wait + notify

= these are methods that every Java/Scala object has
= wait:
= needs the lock

= puts the thread in a waiting state
= releases the lock until activation

= notify:
= needs the lock
= activates all waiting threads

© NemaMoeira & JoséProemga Guarded blocks 20 /30

synchronized + wait + notify

= these are methods that every Java/Scala object has
= wait:
= needs the lock

= puts the thread in a waiting state
= releases the lock until activation

= notify:
= needs the lock
= activates all waiting threads
= Note that the JVM can decide to call wait on its own — spurious wakeups —
needing to re-enter the wait

© NemaMoeira & JoséProemga Guarded blocks 20 /30

object SynchronizedGuardedBlocks extends App {
val lock = new AnyRef
var message: Option[String] = None
val greeter = thread {
lock.synchronized {
while (message == None) lock.wait() // non-busy waiting for a message
log(message.get) // it will eventually log!

}
lock.synchronized {

message = Some ("Hello!")

lock.notify () // awakes the (possibly) locked thread
}

greeter. join()

© NemaMoeira & JoséProemga Guarded blocks

30 / 39

Example 3 — without busy-waiting

iC

import scala.collection._
object SynchronizedPool extends App {
private val tasks = mutable.Queue[()=>Unit] ()

object Worker extends Thread {
setDaemon (true)
def poll() = tasks.synchronized {
while (tasks.isEmpty) tasks.wait()

tasks.dequeue ()

¥

override def run() = while (true) {
val task = poll()
task ()

}

Worker.start ()

def asynchr (body: =>Unit) =
tasks.synchronized {
tasks.enqueue (()=>body)

tasks.notify ()
asynchr{ log("Hello") 1}

asynchr{ log(",world!")}
Thread.sleep (500)

Nelma Moreira & José Proenca

Guarded blocks 31

= Our Worker can run forever (while-true)

= Terminates when the JVM terminates (daemon)

= Worker can be terminated earlier while waiting
= Worker.interrupt()
= triggers an InterruptedException that can be handled
= if it was not waiting, then no exception is raised
= instead a flag Worker.isInterrupted becomes true
= needed if the thread does not awake with notify (e.g., it is doing blocking 1/0)

© NemaMoeira & JoséProemga Guarded blocks 3 /3

Interrupting threads — alternative with graceful shutdown

object Worker extends Thread {
var terminated = false

def poll(): Option[() => Unit] = tasks.synchronized {
while (tasks.isEmpty && !terminated) tasks.wait()
if (!terminated) Some(tasks.dequeue()) else None

import scala.annotation.tailrec

Qtailrec override def run() = poll() match {
case Some (task) => task(); run()
case None =>

def shutdown() = tasks.synchronized {
terminated = true
tasks.notify ()

Nelma Moreira & José Proenca Guarded blocks

39

Volatile variables — Alternative to lock.synchronized

= using the @volatile annotation

= can be [atomically read] and [atomically modified]
= mostly used as status flag

= are never reordered in a thread

= writes are immediately visible to other threads

= very cheap to read

= not enough in many situations (e.g., getUniqueID)

= enough for previous example — Slide 18

Nelma Moreira & José Proenca Guarded blocks

object Volatile extends App {

class Page(val txt: String, var position: Int)

val pages = for (i<- 1 to 5) yield

new Page("Na" * (100 - 20 * i) + " Batman!", -1)
Qvolatile var found = false
for (p <- pages) yield thread {
var i = 0
while (i < p.txt.length && !found)
if (p.txt(i) == ’1’) {
p.position = i
found = true

} else i += 1
}
while (!found) {}
log(s"results: ${pages.map(_.position)}")

© NemaMoeira & JoséProemga Guarded blocks

35 /39

The Java Memory Model overview

Happens-before relation FC

action « happens-before (HB) action 8
means action (3 sees the memory writes of action «

= Program order: « in a thread HB every subsequent 3 in that program and thread
= Monitor locking: unlocking HB every subsequent locking (of the same lock)

= Volatile fields: writing to a volatile field HB every of its subsequent read

= Thread start: calling thrd.start() HB any actions of thrd

= Thread termination: « in a thread HB a join() on that thread.

= Transitivity: if « HB § and 8 HB ~, then o HB v

Nelma Moreira & José Proenca The Java Memory Model overview 36 /39

Happens-before relation FC

action « happens-before (HB) action 8
means action (3 sees the memory writes of action «

= Program order: « in a thread HB every subsequent 3 in that program and thread
= Monitor locking: unlocking HB every subsequent locking (of the same lock)

= Volatile fields: writing to a volatile field HB every of its subsequent read

= Thread start: calling thrd.start() HB any actions of thrd

= Thread termination: « in a thread HB a join() on that thread.

= Transitivity: if « HB § and 8 HB ~, then o HB v

Data race: when a write to memory does not happen-before its intended read.

Nelma Moreira & José Proenca The Java Memory Model overview 36 / 39

Immutable objects and final fields

class Foo(final val a:
val b:
@3

class Foo {
final private int a$;
final private int b$;
final private int c$;
final public int a()
{ return a$; }
public int b()
{ return b$; }
public Foo(int a,
int b,
int ¢) {
{ a$ = a; b$ = b; c$

Int,
Int,
Int)

Nelma Moreira & José Proenca

Final fields: cannot be overridden
val: cannot be updated

vals are final
Objects with only final fields

= do not need synchronisation when shared
(after constructed)

Some collections are immutable (e.g. List),
but contain non-final fields

= need synchronisation when shared

The Java Memory Model overview 37

39

= Thread.sleep = thr.interrupt()
= thr.start = thr.isInterrupted
® thr.join
® Qvolatile var x
® Jlock.synchronized
® Jock.wait

® lock.notify

© NemaMoeia & JoséProemga The Java Memory Model overview 38 /30

fc

getting CPU

State()

+
-

Active State

run() exited

Waiting For
CPU

Terminated / Dead

Life Cycle of a Thread

© NemaMoeira & JoséProemga The Java Memory Model overview .

	Overview
	Managing threads
	Control of the execution order
	Deadlocks
	Guarded blocks
	The Java Memory Model overview

