
4. Exercises: Actor model

DCC-FCUP, University of Porto

José Proença

Concurrent Programming � Part 2

These exercises are taken mainly from the book �Learning Concurrent Programming in Scala�, to
test the understanding over the actor programming model in Akka. Try to solve these exercises by �rst
assuming that no machines fail, and then consider what happens if some of the machines fail during the
execution of the program:

Exercise 1. Implement the timer actor with the TimerActor class. After receiving a Register mes-
sage containing the t timeout in milliseconds, the timer actor sends a Timeout message back after t

milliseconds. The timer must accept multiple Register messages.

Exercise 2. Recall the bank account example from the slides on Java's memory model in the theoretical
lessons. Implement di�erent bank accounts as separate actors, represented by the AccountActor class.
When an AccountActor class receives a Send message, it must transfer the speci�ed amount of money to
the target actor. What will happen if either of the actors receives a Kill message at any point during
the money transaction?

Exercise 3. Implement the SessionActor class for actors that control access to other actors:

class SessionActor(password: String, r: ActorRef)

extends Actor {

def receive = ???

}

After the SessionActor instance receives the StartSession message with the correct password, it forwards
all the messages to the actor reference r, until it receives the EndSession message. Use behaviours to
model this actor.

Exercise 4. Use actors to implement the ExecutionContext interface, described in the slides over
traditional concurrency blocks.

Exercise 5. Implement the FailureDetector actor, which sends Identify messages to the speci�ed
actors every interval seconds. If an actor does not reply with any ActorIdentity messages within
threshold seconds, the FailureDetector actor sends a Failed message to its parent actor, which contains
the actor reference of the failed actor.

Exercise 6. Implement a FlowRateActor class for an actor that forwards incoming messages to a target
actor. This actor must ensure that the number of messages forwarded per second does not exceed a rate
speci�ed in its constructor.



4. Exercises: Actor model 2/2

Exercise 7. Implement a Sequencer actor, which forwards messages to the target actor. If the message
is a two-element tuple where the �rst element is a Long value, then the Long value is interpreted as a
sequence number. All such messages must be forwarded in the proper sequence number order, starting
from number 0.


