
5. Actor model using the Akka framework

Nelma Moreira & José Proença
Concurrent programming (CC3040) 2024/2025

CISTER – U.Porto, Porto, Portugal https://fm-dcc.github.io/cp2425

https://fm-dcc.github.io/cp2425

Overview

We are here

Blocks of sequential code running concurrently and sharing memory:
• What is Scala?
• Concurrency in Java and its memory model
• Basic concurrency blocks and libraries
• Futures and Promises
• Data-Parallel Collections
• Reactive Programming (Concurrently)
• Software Transactional Memory
• Actor model

Nelma Moreira & José Proença Overview 2 / 34

What is the actor model

• Asynchronous message
exchange between actors

• Introduced in Erlang
(we use Akka’s actor library)

• Active, autonomous, no
shared memory, no
synchronisation

Motivation Reo Actors Dreams Local sync + locality Wrapping

Actor model
Brief overview

Actor model
1 Asynchronous message exchange between actors
2 Introduced in Erlang (we use Scala’s Actor library)

3 Active, autonomous, no shared memory, no
synchronisation

Nelma Moreira & José Proença Overview 3 / 34

What is the actor model

• Asynchronous message
exchange between actors

• Introduced in Erlang
(we use Akka’s actor library)

• Active, autonomous, no
shared memory, no
synchronisation

Motivation Reo Actors Dreams Local sync + locality Wrapping

Actor model
Brief overview

Actor model
1 Asynchronous message exchange between actors
2 Introduced in Erlang (we use Scala’s Actor library)

3 Active, autonomous, no shared memory, no
synchronisation

Motivation Reo Actors Dreams Local sync + locality Wrapping

Actor model
Brief overview

Actor model
1 Asynchronous message exchange between actors
2 Introduced in Erlang (we use Scala’s Actor library)

3 Active, autonomous, no shared memory, no
synchronisation

Nelma Moreira & José Proença Overview 3 / 34

What we will see

We will use the Akka framework for actors for:

• Declaring actor classes and creating actor instances
• Modelling actor state and complex actor behaviours
• Manipulating the actor hierarchy and the actor lifecycle
• The different message-passing patterns used in actor communication
• Error recovery using the built-in actor supervision mechanism
• Using remote actors to build concurrent and distributed programs

Documentation: https://doc.akka.io/docs/akka

Nelma Moreira & José Proença Overview 4 / 34

https://doc.akka.io/docs/akka

Creating actors

Core concepts

Actor system
Hierarchical group of actors with shared
configurations, supporting actor creation
and logging.

Actor class
Template that describes the states and
behaviour of an actor, used to create
instances.

Actor instance
Entity that exists at runtime, with a state
and capable of sending and receiving
messages.

Message
Unit of communication that actors use to
communicate. In Akka, any object can be
a message.

Mailbox
Memory block that is used to buffer
messages for a given actor instance.

Actor reference
Object that allows an object to send
messages to a specific actor instance.

Dispatcher
Component that decides when actors are
allowed to process messages. In Akka
every dispatcher is also an execution
context.

Nelma Moreira & José Proença Creating actors 5 / 34

My first actor (class) in Akka

import akka.actor._
import akka.event.Logging

class HelloActor(val hello: String)
extends Actor {

val log = Logging(context.system , this)
def receive = { // Any => Unit (partial)

case ‘hello ‘ =>
log.info(

s"Received␣a␣’$hello ’...␣$hello!")
case msg =>

log.info(
s"Unexpected␣message␣’$msg’")

context.stop(self)
}

}

• Each HelloActor receives
messages

• ... if it receives its hello, it logs
and continues

• ... if it receives something else, it
stops

• context – provides core
functions, such as stop

• self – is the instance’s actor
reference

Nelma Moreira & José Proença Creating actors 6 / 34

Configuring an actor in Akka

object HelloActor { // companion
// two factory methods below
def props(hello: String) =

Props(new HelloActor(hello))
def propsAlt(hello: String) =

Props(classOf[HelloActor], hello)
// def propsAlt2 = Props [HelloActor]

}

Actor configuration
• actor class
• constructor arguments
• mailbox
• dispatcher

Props
• can receive a block of code, used each

time a new actor instance is created;
• can receive a Class object and its

arguments
• can be sent over the network (should

be self-contained)
• avoid creating Props in the actor

class, and use factory methods
instead

Nelma Moreira & José Proença Creating actors 7 / 34

My first actor system with an instance

// in build .sbt :
libraryDependencies ++= Seq(...

,"com.typesafe.akka" %% "akka -actor" % "2.8.5"
,"com.typesafe.akka" %% "akka -remote" % "2.8.5"

)

lazy val ourSystem = akka.actor.ActorSystem("OurExampleSystem")

object ActorsCreate extends App {
val hiActor: ActorRef =

ourSystem.actorOf(HelloActor.props("ola"), name = "greeter")
hiActor ! "ola"
Thread.sleep (1000)
hiActor ! "hi"
Thread.sleep (1000)
ourSystem.terminate ()

}

Nelma Moreira & José Proença Creating actors 8 / 34

HelloActor in one slide

import akka.actor._
import akka.event.Logging

object ActorsCreate2 extends App {
lazy val ourSystem =

akka.actor.ActorSystem("OurSystem")

class Hi(val hi: String) extends Actor {
val log = Logging(context.system , this)
def receive = {

case ‘hi‘ =>
log.info(s"Got␣a␣’$hi ’...␣$hi!")

case msg =>
log.info(s"Unexpected␣’$msg’")
context.stop(self)

}
}

val hiActor: ActorRef =
ourSystem.actorOf(

Props(new Hi("ola")),
name = "greeter")

hiActor ! "ola"
// ... Got a ’ola ’... ola !
Thread.sleep (1000)
hiActor ! "yo"
// ... Unexpected ’yo ’
Thread.sleep (1000)
hiActor ! "привет"
// ... Message (...) was not

delivered .
Thread.sleep (1000)
ourSystem.terminate ()

}

Nelma Moreira & José Proença Creating actors 9 / 34

HelloActor’s feedback

hiActor ! "ola"
// ... [akka :// OurSystem / user / greeter] Got a ’ola ’... ola!

Thread.sleep (1000)
hiActor ! "yo"
// ... [akka :// OurSystem / user / greeter] Unexpected ’yo ’

Thread.sleep (1000)
hiActor ! "привет"
// ... [akka :// OurSystem / user / greeter] Message [...] to

Actor [akka :// OurSystem / user / greeter # -726408098] was not delivered .

Thread.sleep (1000)
ourSystem.terminate ()

}

Nelma Moreira & José Proença Creating actors 10 / 34

Unhandled messages?

class DeafActor extends Actor {
val log = Logging(context.system , this)
def receive = PartialFunction.empty
// default : ignore and log
override def unhandled(msg: Any) = msg match {

case msg: String => log.info(s"I␣do␣not␣hear␣’$msg’")
case msg => super.unhandled(msg)

}
}

object ActorsUnhandled extends App {
val deafActor: ActorRef =

ourSystem.actorOf(Props[DeafActor], name = "deafy")
deafActor ! "ola"
Thread.sleep (1000)
deafActor ! 1234
Thread.sleep (1000)
ourSystem.terminate ()

}

Nelma Moreira & José Proença Creating actors 11 / 34

Modelling actor behaviour

My 2nd example in Akka: a (stateful) countdown

class CountdownActor extends Actor{
var n = 10

// never do this
def receive = if (n > 0) {

case "count" =>
log(s"n␣=␣$n")
n -= 1

} else PartialFunction.empty
}

Correct in Akka, using become:
class CountdownActor extends Actor {

val log = Logging(context.system ,
this)

var n = 10
def counting: Actor.Receive = {

case "count" =>
n -= 1
log.info(s"n␣=␣$n")
if (n == 0) context.become(done)

}
def done = PartialFunction.empty
def receive = counting

}

Nelma Moreira & José Proença Modelling actor behaviour 12 / 34

My 2nd example in Akka: a (stateful) countdown

Not allowed in Akka:
class CountdownActor extends Actor{

var n = 10
// never do this

def receive = if (n > 0) {
case "count" =>

log(s"n␣=␣$n")
n -= 1

} else PartialFunction.empty
}

Correct in Akka, using become:
class CountdownActor extends Actor {

val log = Logging(context.system ,
this)

var n = 10
def counting: Actor.Receive = {

case "count" =>
n -= 1
log.info(s"n␣=␣$n")
if (n == 0) context.become(done)

}
def done = PartialFunction.empty
def receive = counting

}

Nelma Moreira & José Proença Modelling actor behaviour 12 / 34

Actor as a transition systemActors

[278]

When the actor receives the count message and the n field is larger than 1, the behavior
does not change. However, when the actor receives the count message and the n field is
decreased to 0, the actor changes its behavior to done:

The following short program tests the correctness of our actor. We use the actor system to
create a new countdown actor, and send it 20 count messages. The actor only reacts to the
first 10 messages, before switching to the done behavior:

object ActorsCountdown extends App {
 val countdown = ourSystem.actorOf(Props[CountdownActor])
 for (i <- 0 until 20) countdown ! "count"
 Thread.sleep(1000)
 ourSystem.shutdown()
}

Whenever an actor responds to the incoming messages differently depending on its current
state, you should decompose different states into partial functions and use the become
method to switch between states. This is particularly important when actors get more
complex, and ensures that the actor logic is easier to understand and maintain.

When a stateful actor needs to change its behavior, declare a separate
partial function for each of its behaviors. Implement the receive method
to return the method corresponding to the initial behavior.

[in “Learning Concurrent Programming in Scala”, pg. 278]

Nelma Moreira & José Proença Modelling actor behaviour 13 / 34

Running the countdown

object ActorsCountdown extends App {
val countdown = ourSystem.actorOf(Props[CountdownActor])
for (i <- 0 until 20) countdown ! "count"
Thread.sleep (1000)
ourSystem.terminate ()

}

Nelma Moreira & José Proença Modelling actor behaviour 14 / 34

Actor hierarchy and lifecycle

New example with a parent

“OurExampleSystem”

“parent”

child1 child2

class ChildActor extends Actor {
val log =

Logging(context.system , this)
def receive = {

case "sayhi" =>
val parent = context.parent
log.info(s"my␣parent␣$parent␣

made␣me␣say␣hi!")
}
override def postStop () {

log.info("child␣stopped!")
}

}

class ParentActor extends Actor {
val log = Logging(context.system ,

this)
def receive = {

case "create" =>
context.actorOf(Props[ChildActor])
log.info(s"created␣a␣kid;␣

children␣=␣
${context.children}")

case "sayhi" =>
log.info("Kids ,␣say␣hi!")
for (c <- context.children)

c ! "sayhi"
case "stop" =>

log.info("parent␣stopping")
context.stop(self)

}
}

Nelma Moreira & José Proença Actor hierarchy and lifecycle 15 / 34

New example with a parent

“OurExampleSystem”

“parent”

child1 child2

class ChildActor extends Actor {
val log =

Logging(context.system , this)
def receive = {

case "sayhi" =>
val parent = context.parent
log.info(s"my␣parent␣$parent␣

made␣me␣say␣hi!")
}
override def postStop () {

log.info("child␣stopped!")
}

}

class ParentActor extends Actor {
val log = Logging(context.system ,

this)
def receive = {

case "create" =>
context.actorOf(Props[ChildActor])
log.info(s"created␣a␣kid;␣

children␣=␣
${context.children}")

case "sayhi" =>
log.info("Kids ,␣say␣hi!")
for (c <- context.children)

c ! "sayhi"
case "stop" =>

log.info("parent␣stopping")
context.stop(self)

}
}

Nelma Moreira & José Proença Actor hierarchy and lifecycle 15 / 34

A more complete view of the hierarchy

object ActorsHierarchy extends App {
val parent =

ourSystem.actorOf(Props[ParentActor],
"parent")

parent ! "create"
parent ! "create"
Thread.sleep (1000)
parent ! "sayhi"
Thread.sleep (1000)
parent ! "stop"
Thread.sleep (1000)
ourSystem.terminate ()

}

Draw a sequence and a communication diagram
(UML)

Actors

[284]

By studying the standard output, we find that each of the two child actors output a sayhi
message immediately after the parent actor prints that it is about to stop. This is the
normal behavior of Akka actors-a child actor cannot exist without its parent. As soon as the
parent actor stops, its child actors are stopped by the actor system as well.

When an actor is stopped, its child actors are also automatically stopped.

If you ran the preceding example program, you might have noticed that printing an actor
reference reflects the actor's position in the actor hierarchy. For example, printing the child
actor reference shows the akka://OurExampleSystem/user/parent/$a string. The first
part of this string, akka://, denotes that this reference points to a local actor. The
OurExampleSystem part is the name of the actor system that we are using in this example.
The parent/$a part reflects the name of the parent actor and the automatically generated
name $a of the child actor. Unexpectedly, the string representation of the actor reference
also contains a reference to an intermediate actor, called user.

In Akka, an actor that resides at the top of the actor hierarchy is called the guardian actor,
which exists to perform various internal tasks, such as logging and restarting user actors.
Every top-level actor created in the application is placed under the user predefined
guardian actor. There are other guardian actors. For example, actors internally used by the
actor system are placed under the system guardian actor. The actor hierarchy is shown in
the following figure, where the guardian actors user and system form two separate
hierarchies in the actor system called OurExampleSystem:

[
in “Learning Concurrent

Programming in Scala”, pg. 284

]
- ActorSystem
- sys.terminate
- sys/ctxt.actorOf

- ctxt.stop
- ctxt.become
- ctxt.children
- ctxt.parent

Nelma Moreira & José Proença Actor hierarchy and lifecycle 16 / 34

A more complete view of the hierarchy

• parent actor stops ⇒ its children stop
• user and system:

are guardian actors – at the top of the
hierarchy, to log, restart actors, etc.

• hierarchy visible when printing an actor ref,
e.g., for the first child;
akka://OurExampleSystem/user/parent/$a

• Next: ctxt.actorSelection(path)

Actors

[284]

By studying the standard output, we find that each of the two child actors output a sayhi
message immediately after the parent actor prints that it is about to stop. This is the
normal behavior of Akka actors-a child actor cannot exist without its parent. As soon as the
parent actor stops, its child actors are stopped by the actor system as well.

When an actor is stopped, its child actors are also automatically stopped.

If you ran the preceding example program, you might have noticed that printing an actor
reference reflects the actor's position in the actor hierarchy. For example, printing the child
actor reference shows the akka://OurExampleSystem/user/parent/$a string. The first
part of this string, akka://, denotes that this reference points to a local actor. The
OurExampleSystem part is the name of the actor system that we are using in this example.
The parent/$a part reflects the name of the parent actor and the automatically generated
name $a of the child actor. Unexpectedly, the string representation of the actor reference
also contains a reference to an intermediate actor, called user.

In Akka, an actor that resides at the top of the actor hierarchy is called the guardian actor,
which exists to perform various internal tasks, such as logging and restarting user actors.
Every top-level actor created in the application is placed under the user predefined
guardian actor. There are other guardian actors. For example, actors internally used by the
actor system are placed under the system guardian actor. The actor hierarchy is shown in
the following figure, where the guardian actors user and system form two separate
hierarchies in the actor system called OurExampleSystem:

[
in “Learning Concurrent

Programming in Scala”, pg. 284

]
- ActorSystem
- sys.terminate
- sys/ctxt.actorOf

- ctxt.stop
- ctxt.become
- ctxt.children
- ctxt.parent

Nelma Moreira & José Proença Actor hierarchy and lifecycle 17 / 34

A more complete view of the hierarchy

• parent actor stops ⇒ its children stop
• user and system:

are guardian actors – at the top of the
hierarchy, to log, restart actors, etc.

• hierarchy visible when printing an actor ref,
e.g., for the first child;
akka://OurExampleSystem/user/parent/$a

• Next: ctxt.actorSelection(path)

Actors

[284]

By studying the standard output, we find that each of the two child actors output a sayhi
message immediately after the parent actor prints that it is about to stop. This is the
normal behavior of Akka actors-a child actor cannot exist without its parent. As soon as the
parent actor stops, its child actors are stopped by the actor system as well.

When an actor is stopped, its child actors are also automatically stopped.

If you ran the preceding example program, you might have noticed that printing an actor
reference reflects the actor's position in the actor hierarchy. For example, printing the child
actor reference shows the akka://OurExampleSystem/user/parent/$a string. The first
part of this string, akka://, denotes that this reference points to a local actor. The
OurExampleSystem part is the name of the actor system that we are using in this example.
The parent/$a part reflects the name of the parent actor and the automatically generated
name $a of the child actor. Unexpectedly, the string representation of the actor reference
also contains a reference to an intermediate actor, called user.

In Akka, an actor that resides at the top of the actor hierarchy is called the guardian actor,
which exists to perform various internal tasks, such as logging and restarting user actors.
Every top-level actor created in the application is placed under the user predefined
guardian actor. There are other guardian actors. For example, actors internally used by the
actor system are placed under the system guardian actor. The actor hierarchy is shown in
the following figure, where the guardian actors user and system form two separate
hierarchies in the actor system called OurExampleSystem:

[
in “Learning Concurrent

Programming in Scala”, pg. 284

]
- ActorSystem
- sys.terminate
- sys/ctxt.actorOf

- ctxt.stop
- ctxt.become
- ctxt.children
- ctxt.parent

Nelma Moreira & José Proença Actor hierarchy and lifecycle 17 / 34

Discovering actors in the hierarchy

class CheckActor extends Actor {
val log = Logging(context.system , this)
def receive = {

case path: String =>
log.info(s"checking␣path␣$path")
context. actorSelection(path) ! Identify(path)

case ActorIdentity(path , Some(ref)) =>
log.info(s"found␣actor␣$ref␣at␣$path")

case ActorIdentity(path , None) =>
log.info(s"could␣not␣find␣an␣actor␣at␣$path")

}
} // Discovery : actorSelection + Identify + ActorIdentity

val checker = ourSystem.actorOf(Props[CheckActor], "checker")

checker ! "../*" // finds the checker and its siblings
checker ! "../../*" // finds user and system guardians
checker ! "/system /*" // finds internal actors
checker ! "/user/checker2" // logs that no actors were found

Nelma Moreira & José Proença Actor hierarchy and lifecycle 18 / 34

Discovering actors in the hierarchy

class CheckActor extends Actor {
val log = Logging(context.system , this)
def receive = {

case path: String =>
log.info(s"checking␣path␣$path")
context. actorSelection(path) ! Identify(path)

case ActorIdentity(path , Some(ref)) =>
log.info(s"found␣actor␣$ref␣at␣$path")

case ActorIdentity(path , None) =>
log.info(s"could␣not␣find␣an␣actor␣at␣$path")

}
} // Discovery : actorSelection + Identify + ActorIdentity

val checker = ourSystem.actorOf(Props[CheckActor], "checker")

checker ! "../*" // finds the checker and its siblings
checker ! "../../*" // finds user and system guardians
checker ! "/system /*" // finds internal actors
checker ! "/user/checker2" // logs that no actors were found

Nelma Moreira & José Proença Actor hierarchy and lifecycle 18 / 34

Once an actor throws an exception...

When an actor throws an exception, a new “replacement” actor is created, with the
same:

• arguments
• mailbox
• ActorRef

• hence never leak the actual this reference!

Nelma Moreira & José Proença Actor hierarchy and lifecycle 19 / 34

Once an actor throws an exception...

When an actor throws an exception, a new “replacement” actor is created, with the
same:

• arguments
• mailbox
• ActorRef

• hence never leak the actual this reference!

Nelma Moreira & José Proença Actor hierarchy and lifecycle 19 / 34

Actor lifecycle

• actorOf – Creation of an actor reference + instantiation
• preStart() – Ran before starting to process messages (default: empty)
• preRestart(t: Throwable, msg: Option[Any]) – Ran after an exception:

• before creating a new replacement actor (same reference)
• restarting is handled by the parent’s Supervision Strategy (more later)
• default: stops children + runs postStop

• postRestart(t: Throwable) – Ran after recreating a restarted actor
• the new actor is then assigned the previous mailbox
• default: call preStart()

• postStop() – Ran after an actor terminates (default: empty)

Nelma Moreira & José Proença Actor hierarchy and lifecycle 20 / 34

Actor lifecycle in a diagram

Actors

[289]

Let's examine the complete actor lifecycle. As we have learned, a logical actor instance is
created when we call the actorOf method. The Props object is used to instantiate a
physical actor object. This object is assigned a mailbox, and can start receiving input
messages. The actorOf method returns an actor reference to the caller, and the actors can
execute concurrently. Before the actor starts processing messages, its preStart method is
called. The preStart method is used to initialize the logical actor instance.

After creation, the actor starts processing messages. At some point, an actor might need to
be restarted due to an exception. When this happens, the preRestart method is first
called. All the child actors are then stopped. Then, the Props object, previously used in
order to create the actor with the actorOf method, is reused to create a new actor object.
The postRestart method is called on the newly created actor object. After postRestart
returns, the new actor object is assigned the same mailbox as the old actor object, and it
continues to process messages that were in the mailbox before the restart.

By default, the postRestart method calls the prestart method. In some cases, we want
to override this behavior. For example, a database connection might need to be opened only
once during preStart, and closed when the logical actor instance is terminated.

Once the logical actor instance needs to stop, the postStop method gets called. The actor
path associated with the actor is released, and returned to the actor system. By default, the
preRestart method calls the postStop method. The complete actor lifecycle is illustrated
in the following figure:

[in “Learning Concurrent Programming in Scala”, pg. 289]
More: https://doc.akka.io/libraries/akka-core/current/actors.html#classic-actors

Nelma Moreira & José Proença Actor hierarchy and lifecycle 21 / 34

https://doc.akka.io/libraries/akka-core/current/actors.html#classic-actors

Synchrony vs. Asynchrony

Sending x and y from A to B

Synchronous (as in CCS)
A = x ! . y !
B = x? . y?
A | B\{x , y}

⇒ τx .τy

Asynchronous (as in Akka)
x ! happens before y !
x? happens before y?
x ! happens before x?
y ! happens before y?
y ! ?? x?

Different formalisations for global beh.:
• Message sequence charts
• Event structures
• Automata over interactions
• Choreographies:

A ! B : x ; A ! B : y

No duplication
No messages lost
No messages reordered
No blocking send

Synchrony modelled with Asynchrony?
and vice-versa?

Nelma Moreira & José Proença Synchrony vs. Asynchrony 22 / 34

Sending x and y from A to B

Synchronous (as in CCS)
A = x ! . y !
B = x? . y?
A | B\{x , y}

⇒ τx .τy

Asynchronous (as in Akka)
x ! happens before y !
x? happens before y?
x ! happens before x?
y ! happens before y?
y ! ?? x?

Different formalisations for global beh.:
• Message sequence charts
• Event structures
• Automata over interactions
• Choreographies:

A ! B : x ; A ! B : y

No duplication
No messages lost
No messages reordered
No blocking send

Synchrony modelled with Asynchrony?
and vice-versa?

Nelma Moreira & José Proença Synchrony vs. Asynchrony 22 / 34

Sending x and y from A to B

Synchronous (as in CCS)
A = x ! . y !
B = x? . y?
A | B\{x , y}

⇒ τx .τy

Asynchronous (as in Akka)
x ! happens before y !
x? happens before y?

x ! happens before x?
y ! happens before y?
y ! ?? x?

Different formalisations for global beh.:
• Message sequence charts
• Event structures
• Automata over interactions
• Choreographies:

A ! B : x ; A ! B : y

No duplication
No messages lost
No messages reordered
No blocking send

Synchrony modelled with Asynchrony?
and vice-versa?

Nelma Moreira & José Proença Synchrony vs. Asynchrony 22 / 34

Sending x and y from A to B

Synchronous (as in CCS)
A = x ! . y !
B = x? . y?
A | B\{x , y}

⇒ τx .τy

Asynchronous (as in Akka)
x ! happens before y !
x? happens before y?
x ! happens before x?
y ! happens before y?

y ! ?? x?

Different formalisations for global beh.:
• Message sequence charts
• Event structures
• Automata over interactions
• Choreographies:

A ! B : x ; A ! B : y

No duplication
No messages lost
No messages reordered
No blocking send

Synchrony modelled with Asynchrony?
and vice-versa?

Nelma Moreira & José Proença Synchrony vs. Asynchrony 22 / 34

Sending x and y from A to B

Synchronous (as in CCS)
A = x ! . y !
B = x? . y?
A | B\{x , y}

⇒ τx .τy

Asynchronous (as in Akka)
x ! happens before y !
x? happens before y?
x ! happens before x?
y ! happens before y?
y ! ?? x?

Different formalisations for global beh.:
• Message sequence charts
• Event structures
• Automata over interactions
• Choreographies:

A ! B : x ; A ! B : y

No duplication
No messages lost
No messages reordered
No blocking send

Synchrony modelled with Asynchrony?
and vice-versa?

Nelma Moreira & José Proença Synchrony vs. Asynchrony 22 / 34

Sending x and y from A to B

Synchronous (as in CCS)
A = x ! . y !
B = x? . y?
A | B\{x , y}

⇒ τx .τy

Asynchronous (as in Akka)
x ! happens before y !
x? happens before y?
x ! happens before x?
y ! happens before y?
y ! ?? x?

Different formalisations for global beh.:
• Message sequence charts
• Event structures
• Automata over interactions
• Choreographies:

A ! B : x ; A ! B : y

No duplication
No messages lost
No messages reordered
No blocking send

Synchrony modelled with Asynchrony?
and vice-versa?

Nelma Moreira & José Proença Synchrony vs. Asynchrony 22 / 34

Diamond problem: sending by two routes

A ! B : x ;
A ! C : y ;
C ! B : z

B must be ready to receive ‘x?’ and ‘z?’ by any order

Nelma Moreira & José Proença Synchrony vs. Asynchrony 23 / 34

Error recovery with actors

Stopping an actor

Main ways to stop an actor:
• context.stop(act) – stops act and its children, once it finishes processing their

current message
• Kill message – restarts the target actor once it is received
• PoisonPill message – stops the target actor after once it is processed

Stopping in more complex scenarios:
• Using Akka’s DeathWatch (next slide)

Nelma Moreira & José Proença Error recovery with actors 24 / 34

Stopping an actor

Main ways to stop an actor:
• context.stop(act) – stops act and its children, once it finishes processing their

current message
• Kill message – restarts the target actor once it is received
• PoisonPill message – stops the target actor after once it is processed

Stopping in more complex scenarios:
• Using Akka’s DeathWatch (next slide)

Nelma Moreira & José Proença Error recovery with actors 24 / 34

Pingy-Pongy example

master pingy pongy

stop

stop

pongyRef

ping

pong

pong

master pingy pongy

• Example used in the
book to illustrate the
ask-reply pattern

• (in pingy: val reply

= pongy ? "ping")
• We will adapt it for a

graceful shutdown

Nelma Moreira & José Proença Error recovery with actors 25 / 34

Graceful Pingy-Pongy

class GracefulPingy extends Actor {
val log = Logging(context.system , this)
val pongy =

context.actorOf(Props[Pongy], "pongy")
context.watch(pongy)
def receive = {

case "start" => pongy ! "ping"
case "pong" => log.info("Got␣a␣pong")
case "Die ,␣Pingy!" =>

context.stop(pongy)
case Terminated(‘pongy ‘) =>

context.stop(self)
} }

class Pongy extends Actor {
val log =

Logging(context.system ,this)
def receive = {

case "ping" =>
log.info("Got␣a␣ping␣--␣

ponging␣back!")
sender ! "pong"

}
override def postStop () =

log.info("pongy␣going␣
down")

}

Nelma Moreira & José Proença Error recovery with actors 26 / 34

Running the gracefull app

ourSystem gracePingy pongy

stop

stop

terminate

start

DiePingyIn3

watch__

ping

pong

stop__

terminated__

Success__

ourSystem gracePingy pongy

Mechanism 1 (pingy ↔ pongy)
• context.watch(pongy) – the DeathWatch

• wait for Terminated message

Mechanism 2 (ourSystem ↔ pingy)
• ask to “Die”

• check if it terminated – using Futures

Nelma Moreira & José Proença Error recovery with actors 27 / 34

Running the gracefull app (code)

import akka.pattern.gracefulStop

object CommunicatingGracefulStop extends App {
val gracePingy = ourSystem.actorOf(Props[GracefulPingy], "gracePingy")
gracePingy ! "start"

val stopped = gracefulStop(gracePingy , 3.seconds , "Die ,␣Pingy!")
stopped onComplete { // stopped is a Future (not covered)

case Success(x) =>
log("graceful␣shutdown␣successful")
ourSystem.terminate ()

case Failure(t) =>
log("grace␣not␣stopped!")
ourSystem.terminate ()

} }

Nelma Moreira & José Proença Error recovery with actors 28 / 34

Handling children’s exceptions (Actor supervision)

class Naughty extends Actor {
val log = Logging(context.system ,this)
def receive = {

case s: String => log.info(s)
case msg => throw new

RuntimeException
}
override def postRestart(t:Throwable)=

log.info("naughty␣restarted")
}

import SupervisorStrategy._
class Supervisor extends Actor {

context.actorOf(Props[Naughty],
"naughty")

def receive = PartialFunction.empty
override val supervisorStrategy =

OneForOneStrategy () {
case ake: ActorKilledException

=> Restart
case _ => Escalate

} }

ourSystem.actorOf(Props[Supervisor], "super")
val children = ourSystem.actorSelection("/user/super/*")
children ! "hello" // succeeds
children ! Kill // stops naughty , but super restarts it
children ! "sorry␣about␣that" // succeeds
children ! "kaboom".toList // naughty and super throw exception

Nelma Moreira & José Proença Error recovery with actors 29 / 34

Remote actors over TCP

Compilation with remote actors

build.sbt

needs to import
akka-remote:

libraryDependencies ++= Seq(
...

,"com.typesafe.akka" %% "akka -actor" % "2.8.5" // or older
,"com.typesafe.akka" %% "akka -remote" % "2.8.5"

)

Network config-
ured with Netty
library

import com.typesafe.config._
def remotingConfig(port: Int) = ConfigFactory.parseString(s"""

akka {
actor.provider = "akka.remote.RemoteActorRefProvider"
remote {

enabled -transports = ["akka.remote.netty.tcp"]
netty.tcp {

hostname = "127.0.0.1"
port = $port }

}
}""")

def remotingSystem(name: String , port: Int): ActorSystem =
ActorSystem(name , remotingConfig(port))

Nelma Moreira & José Proença Remote actors over TCP 30 / 34

Remote Pingy-Pongy – running two Apps!

object RemotingPongySystem extends App {
val system =

remotingSystem("PongyDimension",
24321)

val pongy = system.actorOf(Props[Pongy],
"pongy")

Thread.sleep (15000)
system.terminate ()

}

object RemotingPingySystem extends App {
val system =

remotingSystem("PingyDimension",
24567)

val runner = system.actorOf(Props[Runner],
"runner")

runner ! "start"
Thread.sleep (5000)
system.terminate ()

}

class Runner extends Actor {
val log = Logging(context.system , this)
val pingy = context.actorOf(Props[Pingy], "pingy")
def receive = {

case "start" =>
val pongySys =

"akka.tcp:// PongyDimension@127.0.0.1:24321"
val pongyPath = "/user/pongy"
val url = pongySys + pongyPath
val selection = context.actorSelection(url)
selection ! Identify (0)

case ActorIdentity (0, Some(ref)) =>
pingy ! ref

case ActorIdentity (0, None) =>
log.info("Something ’s␣wrong␣-␣ain’t␣no␣pongy␣

anywhere!")
context.stop(self)

case "pong" =>
log.info("got␣a␣pong␣from␣another␣dimension.")
context.stop(self)

}
}

Nelma Moreira & José Proença Remote actors over TCP 31 / 34

Running the multi-dimensional Pingy-Pongy

• Start the RemotingPongySystem

• Start the RemotingPingySystem within 15 sec.
• Use different SBT instances
• Runner in PingyDimension should get a “pong” soon

Deployment logic vs. Application logic
• Deployment log.: setting up network communication
• Application log.: interactions between agents
• These should be kept in separate
• In our example, Runner handles deployment logic

Nelma Moreira & José Proença Remote actors over TCP 32 / 34

Running the multi-dimensional Pingy-Pongy

• Start the RemotingPongySystem

• Start the RemotingPingySystem within 15 sec.
• Use different SBT instances
• Runner in PingyDimension should get a “pong” soon

Deployment logic vs. Application logic
• Deployment log.: setting up network communication
• Application log.: interactions between agents
• These should be kept in separate
• In our example, Runner handles deployment logic

Nelma Moreira & José Proença Remote actors over TCP 32 / 34

Wrapping up remote actors

Steps for handling remote actors
• Declaring each actor system with appropriate remoting configuration
• Starting each actor system in separate processes or on separate machines
• Obtain actor references by using actor path selection
• Transparently send messages by using these actor references

Nelma Moreira & José Proença Remote actors over TCP 33 / 34

Wrapping up Actors

• Declare actor classes and create actor instances
• Model actor state and complex actor behaviours
• Manipulate the actor hierarchy and the actor lifecycle
• Use some message-passing patterns used in actor communication
• Use error recovery with the built-in actor supervision mechanism
• Use remote actors to build concurrent and distributed programs

Documentation: https:
//doc.akka.io/docs/akka

Motivation Reo Actors Dreams Local sync + locality Wrapping

Actor model
Brief overview

Actor model
1 Asynchronous message exchange between actors
2 Introduced in Erlang (we use Scala’s Actor library)

3 Active, autonomous, no shared memory, no
synchronisation

Nelma Moreira & José Proença Remote actors over TCP 34 / 34

https://doc.akka.io/docs/akka
https://doc.akka.io/docs/akka

	Overview
	Creating actors
	Modelling actor behaviour
	Actor hierarchy and lifecycle
	Synchrony vs. Asynchrony
	Error recovery with actors
	Remote actors over TCP

