5. Actor model using the Akka framework

Nelma Moreira & José Proenca
Concurrent programming (CC3040) 2024 /2025

CISTER - U.Porto, Porto, Portugal https://fm-dcc.github.io/cp2425

[B§PORTO CENTRO DE
U o

< CISTER - Research Centre in
T~ FACULDADE DE CIENCIAS MATEMATICA “ , Real-Time & Embedded
UNIVERSIDADE DO PORTO UNIVERSIDADE DO PORTO Computing Systems

https://fm-dcc.github.io/cp2425

Overview

Blocks of sequential code running concurrently and sharing memory:
= What is Scala?

= Concurrency in Java and its memory model
= Basic concurrency blocks and libraries

» Futures and Promises

» Data-Parallel Collections

» Reactive Programming (Concurrently)

» Software Transactional Memory

= Actor model

 NemaMoeia & JoséProsmga e .

= Asynchronous message
exchange between actors

Mailbox

messages
(we use Akka's actor library) — Code

= Introduced in Erlang

~ Nelma Moreira & José Proenca Overview 3/ 34

= Asynchronous message

exchange between actors Mailbox
= Introduced in Erlang messages
(we use Akka's actor library) — Code

= Active, autonomous, no

shared memory, no
synchronisation

© NemaMoeira & JoséProsmga e .

We will use the Akka framework for actors for:

= Declaring actor classes and creating actor instances

» Modelling actor state and complex actor behaviours

= Manipulating the actor hierarchy and the actor lifecycle

= The different message-passing patterns used in actor communication
= Error recovery using the built-in actor supervision mechanism

= Using remote actors to build concurrent and distributed programs

Documentation: https://doc.akka.io/docs/akka

© NemaMoeia & JoséProsmga e .

https://doc.akka.io/docs/akka

Creating actors

Actor system Mailbox

Hierarchical group of actors with shared Memory block that is used to buffer
configurations, supporting actor creation messages for a given actor instance.
and logging.

Actor reference

Actor class Object that allows an object to send
Template that describes the states and

behaviour of an actor, used to create

instances. Dispatcher

Component that decides when actors are
allowed to process messages. In Akka
every dispatcher is also an execution
context.

messages to a specific actor instance.

Actor instance
Entity that exists at runtime, with a state
and capable of sending and receiving
messages.

~ Nelma Moreira & José Proenca

Creating actors 5 /34

e

import akka.actor._
import akka.event.Logging

class HelloActor(val hello: String)
extends Actor {
val log = Logging(context.system, this)
def receive = { // Any => Unit (partial)

case ‘hello‘ =>
log.info(
s"Received a,’$hello’... $hello!")
case msg =
log.info(

s"Unexpected message’ $msg’")
context.stop(self)

Each HelloActor receives
messages

. if it receives its hello, it logs
and continues

. if it receives something else, it
stops

context — provides core
functions, such as stop

self — is the instance's actor
reference

Creating actors 6 /34

e

object HelloActor { // companion
// two factory methods below
def props(hello: String) =
Props(new HelloActor (hello))
def propsAlt(hello: String) =
Props(class0f [HelloActor], hello)
//def propsAlt2 = Props[HelloActor]

Actor configuration

= actor class
= constructor arguments
= mailbox

= dispatcher

Props

= can receive a block of code, used each
time a new actor instance is created:;

= can receive a Class object and its
arguments

= can be sent over the network (should
be self-contained)

= avoid creating Props in the actor

class, and use factory methods
instead

Creating actors 7 /34

// in build.sbt:

libraryDependencies ++= Seq(
,"com.typesafe.akka" %% "akka-actor" % "2.8.5"
,"com.typesafe.akka" %% "akka-remote" % "2.8.5"

lazy val ourSystem = akka.actor.ActorSystem("OurExampleSystem")

object ActorsCreate extends App {
val hiActor: ActorRef =
ourSystem.actor0f (HelloActor .props("ola"), name = "greeter")
hiActor ! "ola"
Thread.sleep(1000)
hiActor ! "hi"
Thread.sleep(1000)
ourSystem.terminate ()

8 /34

e

import akka.actor._
import akka.event.Logging

object ActorsCreate2 extends App {
lazy val ourSystem =
akka.actor.ActorSystem("QOurSystem")

class Hi(val hi: String) extends Actor {
val log = Logging(context.system, this)

def receive = {
case ‘hi‘ =>
log.info(s"Gotya,’$hi’. .. $hil")
case msg =S

log.info(s"Unexpected,’$msg’")
context.stop(self)

val hiActor: ActorRef =
ourSystem.actor0f(
Props(new Hi("ola")),
name = "greeter")

hiActor ! "ola"

// ... Got a ’ola’... ola!

Thread.sleep (1000)

hiActor ! "yo"

// ... Unexpected ’yo’

Thread.sleep (1000)

hiActor ! "mpuser"

// ... Message (...) was not
delivered.

Thread.sleep (1000)

ourSystem. terminate ()

Creating actors

9/34

hiActor ! "ola"
// ... [akka://0OurSystem/user/greeter] Got a ’ola’... ola!

Thread.sleep (1000)
hiActor ! "yo"
// ... [akka://0OurSystem/user/greeter] Unexpected ’yo’

Thread.sleep (1000)
hiActor ! "upuser"
// ... l[akka://0OurSystem/user/greeter] Message [...] to
Actor [akka://OurSystem/user/greeter#-726408098] was not delivered.

Thread.sleep (1000)
ourSystem. terminate ()

10 / 34

class DeafActor extends Actor {

val log = Logging(context.system, this)

def receive = PartialFunction.empty

// default: ignore and log

override def unhandled(msg: Any) = msg match {
case msg: String => log.info(s"I doynot hear’$msg’")
case msg => super.unhandled(msg)

object ActorsUnhandled extends App {
val deafActor: ActorRef =
ourSystem.actor0f (Props[DeafActor], name = "deafy")
deafActor ! "ola"
Thread.sleep (1000)
deafActor ! 1234
Thread.sleep(1000)
ourSystem. terminate ()

Modelling actor behaviour

class CountdownActor extends Actor{

var n = 10
// never do this
def receive = if (n > 0) {
case "count" =>
log(s"n,=,%n")
n -=1

} else PartialFunction.empty

© NemaMoeia & JoséProsmga Modelling actor behaviour 12/ 3

Not allowed in Akka:

class CountdownActor extends Actor{

var n = 10
// never do this
def receive = if (n > 0) {
case "count" =>
log(s"n,=y,$n")
n -=1

} else PartialFunction.empty

}

e

Correct in Akka, using become:

class CountdownActor extends Actor {
val log = Logging(context.system,
this)
var n = 10
def counting: Actor.Receive = {
case "count" =>
n -=1
log.info(s"n,=,$n")
if (n == 0) context.become(done)
}
def done = PartialFunction.empty
def receive = counting
}

Modelling actor behaviour

12 /34

© NemaMoeia & JoséProsmga Modelling actor behaviour 133

object ActorsCountdown extends App {
val countdown = ourSystem.actor0f(Props[CountdownActor])
for (i <- 0 until 20) countdown ! "count"
Thread.sleep(1000)
ourSystem.terminate ()

}

© NemaMoeia & JoséProsmga Modelling actor behaviour

14 / 34

Actor hierarchy and lifecycle

“OurExampleSystem”
/'\

“parent”
X ~
childy childs

© NemaMoeia & JoséProsmga Actor hierarchy and lifecycle 15/ 34

“OurExampleSystem”
/'\

“parent”
7y Ny

childy

childy

ChildActor extends Actor {
log =
Logging(context.system,
receive = {

class
val
this)
def
case
val parent =

"sayhi" =>
context.parent
log.info(s"my,parent $parent,
made mesay hi!")
}
override def postStop() {
log.info("child,stopped!")

}
~ Nelma Moreira & José Proenca

e

class ParentActor extends Actor {

val log =
this)

receive = {

Logging(context.system,

def

case

context.actor0f (Props[ChildActor])
log.info(s"createdyagkid;y

"create" =>

children =
${context.childrenl}")
case "sayhi" =>
log.info ("Kids , say hi!")
for (c <-
c ! "sayhi"

context.children)
case "stop" =>
log.info("parent,stopping")
context.stop(self)

Actor hierarchy and lifecycle

15 / 34

e

parent
parent
Thread
parent

parent

Thread.

Thread.
ourSystem.terminate ()

object ActorsHierarchy extends App {
val parent =
ourSystem.actor0f (Props[ParentActor],
"parent")

! "create"

! "create"

.sleep(1000)

! "sayhi"
sleep (1000)
! "stop"
sleep(1000)

Draw a sequence and a communication diagram

(UML)

OurExampleSystem

user system
parent

|$a||$b|

- ActorSystem ctxt.stop

ctxt.become

- sys.terminate

- sys/ctxt.actorOf ctxt.children

ctxt.parent

Actor hierarchy and lifecycle 16 / 34

= parent actor stops = its children stop

= user and system:
are guardian actors — at the top of the
hierarchy, to log, restart actors, etc.

= hierarchy visible when printing an actor ref,
e.g., for the first child,;
akka://OurExampleSystem/user/parent/$a

© NemaMoeia & JoséProsmga Actor hicrarchy and lifecycle 17/ 3

OurExampleSystem

= parent actor stops = its children stop -
= user and system:

are guardian actors — at the top of the

hierarchy, to log, restart actors, etc. | $a | | $b |

= hierarchy visible when printing an actor ref,
e.g., for the first child,;

akka://OurExampleSystem/user/parent/$a - ActorSystem - ctxt.stop
s Next: ctxt.actorSelection(path) - sys.terminate - ctxt.become
- sys/ctxt.actorOf - ctxt.children

ctxt.parent

© NemaMoeia & JoséProsmga Actor hierarchy and lifecycle i e

class CheckActor extends Actor {

val log = Logging(context.system, this)
def receive = {
case path: String =>
log.info(s"checking, path $path")
context.actorSelection(path) ! Identify(path)
case ActorIdentity(path, Some(ref)) =>
log.info(s"found actor ,$ref at, $path")
case ActorIdentity(path, None) =>
log.info(s"could notfind an actor at $path")
}
} // Discovery: actorSelection + Identify + ActorIdentity

© NemaMoeia & JoséProsmga Actor hierarchy and lifecycle

18 / 34

class CheckActor extends Actor {
val log = Logging(context.system, this)
def receive = {
case path: String =>

log.info(s"checking, path $path")
context.actorSelection(path) ! Identify(path)
case ActorIdentity(path, Some(ref)) =>
log.info(s"found actor ,$ref at, $path")
case ActorIdentity(path, None) =>
log.info(s"could notfind an actor at $path")

}

} // Discovery: actorSelection + Identify + ActorIdentity

val checker = ourSystem.actorOf(Props[CheckActor],

"checker")

checker ! "../x" // finds the checker and its siblings
checker ! "../../*" // finds user and system guardians
checker ! "/system/*" // finds intermnal actors

checker ! "/user/checker2" // logs that no actors were found

Actor hierarchy and lifecycle

18 / 34

When an actor throws an exception, a new “replacement” actor is created, with the

Same:

= arguments

= mailbox
= ActorRef

© NemaMoeia & JoséProsmga Actor hierarchy and lifecycle 19/ 3

When an actor throws an exception, a new “replacement” actor is created, with the

Same:

= arguments

= mailbox
= ActorRef

= hence never leak the actual this reference!

© NemaMoeia & JoséProsmga Actor hierarchy and lifecycle 19/ 3

= actor0f — Creation of an actor reference 4+ instantiation

= preStart() — Ran before starting to process messages (default: empty)
= preRestart(t: Throwable, msg: Option[Any]) — Ran after an exception:

= before creating a new replacement actor (same reference)
= restarting is handled by the parent’s Supervision Strategy (more later)
= default: stops children + runs postStop

= postRestart(t: Throwable) — Ran after recreating a restarted actor

= the new actor is then assigned the previous mailbox
= default: call prestart()

= postStop() — Ran after an actor terminates (default: empty)

© NemaMoeia & JoséProsmga Actor hierarchy and lifecycle 50

before actor creation

actorOf

actor path reserved
actor object created
preStart called

Actor lifecycle

postRestart called on the new actor object

&

y

message processed normally Obj ect

preRestart called on the old actor object

actor instance stopped
postStop called
actor path released

h
H
'
'
'
'
'
'
'
'
'
:
'
' actor
'
'
'
'
'
'
'
'
H
'
'
H

after actor termination

More: https://doc.akka.io/libraries/akka-core/current/actors.html#classic-actors

© NemaMoeia & JoséProsmga Actor hierarchy and lifecycle 21/ 34

https://doc.akka.io/libraries/akka-core/current/actors.html#classic-actors

Synchrony vs. Asynchrony

Synchronous (as in CCS)

A=x!l.yl
B=x?.y?
Al B\{x,y}

© NemaMoeia & JoséProsmga Synchrony vs. Asynchrony 5

Synchronous (as in CCS)

A=x!l.yl
B=x?.y?
Al B\{x,y}
= Tx.Ty

© NemaMoeia & JoséProsmga Synchrony vs. Asynchrony 5

Synchronous (as in CCS) Asynchronous (as in Akka)
A=xl.yl x! happens before y!
B=x?.y? x? happens before y?

Al B\{x,y}
= Ty

© NemaMoeia & JoséProsmga Synchrony vs. Asynchrony 5

Synchronous (as in CCS) Asynchronous (as in Akka)
A=xl.yl x! happens before y!
B=x?.y? x? happens before y?

A | B\{x,y} x! happens before x?

y! happens before y?
= Tx.Ty

© NemaMoeia & JoséProsmga Synchrony vs. Asynchrony 5

Synchronous (as in CCS) Asynchronous (as in Akka)
A=xl.yl x! happens before y!
B=x?.y? x? happens before y?

A | B\{x,y} x! happens before x?

y! happens before y?
= Tx-Ty y! 7 x?

© NemaMoeia & JoséProsmga Synchrony vs. Asynchrony 5

Synchronous (as in CCS) Asynchronous (as in Akka)
A=xl.yl x! happens before y!
B=x?.y? x? happens before y?

A | B\{x,y} x! happens before x?
y! happens before y?

=TTy yl 7?7 x?

Different formalisations for global beh.: No duplication

= Message sequence charts No messages lost

No messages reordered
= Event structures &

)] No blocking send
= Automata over interactions

= Choreographies: Synchrony modelled with Asynchrony?
A—B:x ; A—-B:y and vice-versa?

© NemaMoeira & JoséProsmga Synchrony vs. Asynchrony 5

A— B:x;
A—C:y;
C—B:z

B must be ready to receive ‘x?" and ‘z?" by any order

© NemaMoeia & JoséProsmga Synchrony vs. Asynchrony 23/ 34

Error recovery with actors

Main ways to stop an actor:
= context.stop(act) — stops act and its children, once it finishes processing their
current message

= Kill message — restarts the target actor once it is received

= PoisonPill message — stops the target actor after once it is processed

Main ways to stop an actor:
= context.stop(act) — stops act and its children, once it finishes processing their
current message

= Kill message — restarts the target actor once it is received

= PoisonPill message — stops the target actor after once it is processed

Stopping in more complex scenarios:
= Using Akka's DeathWatch (next slide)

master

master

pongyRef

pong

pingy

ping

pong

pongy

-—
—

pingy

pongy

= Example used in the
book to illustrate the

ask-reply pattern

= (in pingy: val reply
= pongy ? "ping")

= We will adapt it for a
graceful shutdown

Error recovery with actors 25 / 34

e

class GracefulPingy extends Actor {
val log = Logging(context.system, this)
val pongy =
context.actor0f (Props[Pongyl],
context.watch(pongy)
def receive = {
case "start" => pongy ! "ping"
case "pong" => log.info("Got,a,pong")
case "Die,_ Pingy!" =>
context.stop(pongy)
case Terminated(‘pongy ‘) =>
context.stop(self)

" pongy ")

}}

class Pongy extends Actor {

val log =
Logging(context.system,this)
def receive = {
case "ping" =>

log.info ("Gotya,pingu--u
ponging back!")

sender ! "pong"

}

override def postStop() =
log.info("pongyy,goingy
down")

Error recovery with actors

26 / 34

ourSystem gracePingy pongy
start
DiePingyIn3

watch__
ping
pong
stop__

terminated__

Success__
ourSystem gracePingy pongy

e

Mechanism 1 (pingy « pongy)

= context.watch(pongy) — the DeathWatch

= wait for Terminated message

Mechanism 2 (ourSystem — pingy)
= ask to "Die"

= check if it terminated — using Futures

Error recovery with actors

27 / 34

import akka.pattern.gracefulStop

object CommunicatingGracefulStop extends App {
val gracePingy = ourSystem.actor0f(Props[GracefulPingy]l, "gracePingy")
gracePingy ! "start"

val stopped = gracefulStop(gracePingy, 3.seconds, "Die, Pingy!")
stopped onComplete { // stopped is a Future (not covered)
case Success(x) =>
log("graceful shutdown,successful")
ourSystem.terminate ()
case Failure(t) =>
log("grace not stopped!")
ourSystem. terminate ()

})

28 / 34

e

import SupervisorStrategy._
class Naughty extends Actor { class Supervisor extends Actor {
val log = Logging(context.system,this) context.actor0f (Props[Naughty],
def receive = { "naughty")
case s: String => log.info(s) def receive = PartialFunction.empty
case msg => throw new override val supervisorStrategy =
RuntimeException OneForOneStrategy () {
¥ case ake: ActorKilledException
override def postRestart(t:Throwable)= => Restart
log.info ("naughty restarted") case _ => Escalate
} } 3
ourSystem.actor0f (Props[Supervisor], "super")
val children = ourSystem.actorSelection("/user/super/*")
children ! "hello" // succeeds
children ! Kill // stops naughty, but super restarts it
children ! "sorry,about,that" // succeeds
children ! "kaboom".toList // naughty and super throw exception

Remote actors over TCP

e

libraryDependencies ++= Seq/(
build.sbt o
needs to anort ,"com.typesafe.akka" %% "akka-actor" % "2.8.5" // or older
,"com.typesafe.akka" %% "akka-remote" % "2.8.5"
akka-remote:)
import com.typesafe.config._
def remotingConfig(port: Int) = ConfigFactory.parseString(s"""
akka {
actor.provider = "akka.remote.RemoteActorRefProvider"
remote {
NEUNOFkCOHﬁg- enabled-transports = ["akka.remote.netty.tcp"]
ured with Netty netty.tep {
i hostname = "127.0.0.1"
library port = $port }
}
Frme)
def remotingSystem(name: String, port: Int): ActorSystem =
ActorSystem(name, remotingConfig(port))

© NemaMoeia & JoséProsmga Remote actors over TCP e

object RemotingPongySystem extends App {

val system =
remotingSystem("PongyDimension",
24321)

val pongy = system.actor0f(Props[Pongyl,
"pongy")

Thread.sleep (15000)

system. terminate ()

¥

object RemotingPingySystem extends App {

val system =
remotingSystem("PingyDimension",
24567)

val runner = system.actor0f(Props[Runner],
"runner")

runner ! "start"

Thread.sleep (5000)

system. terminate ()

class Runner extends Actor {
val log = Logging(context.system, this)
val pingy = context.actor0f(Props[Pingyl, "pingy")
def receive = {
case "start" =>
val pongySys =
"akka.tcp://PongyDimension@127.0.0.1:24321"

val pongyPath = "/user/pongy"
val url = pongySys + pongyPath
val selection = context.actorSelection(url)

selection ! Identify(0)

case ActorIdentity (0, Some(ref)) =>
pingy ! ref

case ActorIdentity (0, None) =>
log.info("Something’s wrong,-y,ain’t noypongyy

anywhere!")

context.stop(self)

case "pong" =>
log.info("got aypong fromyanother dimension.")
context.stop(self)

Remote actors over TCP 31/ 34

Start the RemotingPongySystem

Start the RemotingPingySystem within 15 sec.

Use different SBT instances

= Runner in PingyDimension should get a “pong” soon

© NemaMoeira & JoséProsmga Remote actors over TCP /%

Start the RemotingPongySystem

Start the RemotingPingySystem within 15 sec.
Use different SBT instances

= Runner in PingyDimension should get a “pong” soon

Deployment logic vs. Application logic

= Deployment log.: setting up network communication
= Application log.: interactions between agents
= These should be kept in separate

= In our example, Runner handles deployment logic

 NemaMoeia & JoséProsmga Remote actors over TCP .

Steps for handling remote actors
= Declaring each actor system with appropriate remoting configuration

= Starting each actor system in separate processes or on separate machines
= Obtain actor references by using actor path selection

= Transparently send messages by using these actor references

© NemaMoeia & JoséProsmga Remote actors over TCP o

= Declare actor classes and create actor instances

= Model actor state and complex actor behaviours

= Manipulate the actor hierarchy and the actor lifecycle

= Use some message-passing patterns used in actor communication
= Use error recovery with the built-in actor supervision mechanism
= Use remote actors to build concurrent and distributed programs

Documentation: https:
//doc.akka.io/docs/akka

Actor 1

—_—

~ Nelma Moreira & José Proenca Remote actors over TCP 34 /34

https://doc.akka.io/docs/akka
https://doc.akka.io/docs/akka

	Overview
	Creating actors
	Modelling actor behaviour
	Actor hierarchy and lifecycle
	Synchrony vs. Asynchrony
	Error recovery with actors
	Remote actors over TCP

