4. Basic building blocks of concurrency

Nelma Moreira & José Proenca
Concurrent programming (CC3040) 2024 /2025

CISTER - U.Porto, Porto, Portugal https://fm-dcc.github.io/cp2425

P ORTO CENTRO DE CISTER - Research Centre in
—2)

F FACULDADE DE CIENCIAS MATEMAT'CA ?e:l—ﬂi‘e & Embedded
UNIVERSIDADE DO PORTO UNIVERSIDADE DO PORTO Computing Systems

https://fm-dcc.github.io/cp2425

Overview

Blocks of sequential code running concurrently and sharing memory:
= What is Scala?

= Concurrency in Java and its memory model
= Basic concurrency blocks and libraries

» Futures and Promises

» Data-Parallel Collections

» Reactive Programming (Concurrently)

» Software Transactional Memory

= Actor model

 NemaMoeia & JoséProsmga e 2/

= Tread pools: Executor and ExecutionContext

= Non-blocking synchronisation — compare-and-set (CAS)
= Lazy (concurrent) values

= Concurrent collections

= Running OS processes

© NemaMoeia & JoséProsmga Overview 33

Existing thread pools in Scala

e

Executor executor = anEzecutor;

executor.execute (new RunnableTaskl ()); = [Executor: can start a new thread, an

executor.execute (new RunnableTask2()); ..
eX|st|ng one, or the current one

= Abstracts from the management of

import scala.concurrent._ threads

import java.util.concurrent.ForkJoinPool .
= ExecutorService: API that extends

object ExecutorsCreate extends App { Executor with shutdown

val executor = mnew ForkJoinPool
= executor.shutdown — executes all
executor.execute (new Runnable { .

def run() = log("This,taskyisyrung tasks and then stops working

asynchronously.") threads
b ® executor.awaitTermination(...) —
Thread.sleep(500) // not needed with

fork:=false in SBT
} time, the tasks are not completed

force termination if, after a given

© NemaMoeia & JoséProsmga Existing thread pools in Scala e

e

import scala.concurrent._
object ExecutionContextGlobal extends App {
val ectx = ExecutionContext.global
ectx.execute(new Runnable {
def run() = log("Running on,the ,execution context.")
b
Thread.sleep (500)
}

object ExecutionContextCreate extends App {
val pool = new forkjoin.ForkJoinPool (2)
val ectx = ExecutionContext.fromExecutorService(pool)
ectx.execute(new Runnable {
def run() = log("Running on,the execution contexty
again.")
b
Thread.sleep (500)

scala.concurrent: haS

ExecutionContext

Similar to Executor but
more Scala specific

often used as implicit
parameter

global: default execution
context (internally uses a
ForkJoinPool)

fromExecutorService:
creates ExecutionContext

from ExecutorService

Existing thread pools in Scala 5/ 36

Similar to threads:

We now define execute

def thread(body: =>Unit): Thread
=
val t = new Thread {
override def run() = body
}
t.start ()
t
¥

=>Unit) =
ExecutionContext.global.execute(
new Runnable { def run() = body }

def execute(body:

)
// For example:
object ExecutionContextSleep extends App {
for (i<- 0 until 32) execute {
Thread.sleep (2000)
log(s"Task, $i ,completed.")
}
Thread.sleep(10000)
}

Existing thread pools in Scala

6/ 36

e

= Expected: all executions terminate after 2s

= Result: only some execute after 2s

object ExecutionContextSleep
extends App {
for (i<- 0 until 32) execute {
Thread.sleep(2000)
log(s"Task,$i completed.")
}
Thread.sleep(10000)
}

© NemaMoeia & JoséProsmga Existing thread pools in Scala 73

object ExecutionContextSleep
extends App {
for (i<- 0 until 32) execute {
Thread.sleep(2000)
log(s"Task,$i completed.")
}
Thread.sleep(10000)
}

e

Expected: all executions terminate after 2s

Result: only some execute after 2s

Using quad-core CPU with hyper threading

global has 8 threads in the thread pool

Existing thread pools in Scala 7 /36

= Expected: all executions terminate after 2s

= Result: only some execute after 2s

= Using quad-core CPU with hyper threading

object ExecutionContextSleep

extends App { = global has 8 threads in the thread pool

for (i<- 0 until 32) execute {

Thread.sleep(2000)

log(s"Task,$i completed.")

¥ = after 2s, 8 tasks print "completed"

Thread.sleep(10000)

¥ = after 2s more, 8 more print "completed"

= executes tasks in batches of 8

= sleep: all enter a timed waiting state

© NemaMoeia & JoséProsmga Existing thread pools in Scala s

= Expected: all executions terminate after 2s

= Result: only some execute after 2s

= Using quad-core CPU with hyper threading

object ExecutionContextSleep

extends App { = global has 8 threads in the thread pool

for (i<- 0 until 32) execute {
Thread.sleep(2000)

log(s"Task,$i,completed. ") = executes tasks in batches of 8

¥ = after 2s, 8 tasks print "completed"
Thread.sleep(10000)

¥ = after 2s more, 8 more print "completed"

= sleep: all enter a timed waiting state

= if T1 waits for T10 to notify: blocks
indefinitely

© NemaMoeia & JoséProsmga Existing thread pools in Scala s

Lock-free programming

atomic variable: memory location that

supports complex linearizable operations
. i.e., appears to occur atomically

write of a volatile operation:
simple linearizable operation

at least two reads and/or writes:
complex linearizable operation

© NemaMoeia & JoséProsmga Lockfree programming

8 /36

e

= atomic variable: memory location that Variation of Example 1 (getUniqueId)

supports complex linearizable operations import
. . java.util.concurrent.atomic. _
= .. i.e., appears to occur atomically

. . bject AtomicUid extends A
= write of a volatile operation: object AtomicUid extends App {
private val uid =
simple linearizable operation new AtomicLong (OL)
= at least two reads and/or writes: def getUniqueld(): Long =

complex linearizable operation uid.incrementAndGet ()

. il tat . t execute {
= java.util.concurrent.atomic supports some R

complex ones: {getUniqueId O}")

}

log(s"Goty,a uniqueid:$
{getUniqueId () }")

= AtomicBoolean
= Atomiclnteger
= Atomiclong }

= AtomicReference

 NemaMoeira & JoséProsmga Lock-free programming e

= CAS can be used to implement
others:

= getAndSet
= decrementAndGet
= addAndGet

= available in all atomic variables

= including AtomicReference[T]

e

Long-CAS conceptually equivalent to:

def compareAndSet(ov: Long, nv: Long):

Boolean = this.synchronized {
if (this.get != ov) false else {
this.set (nv)
true

L

Ref-CAS conceptually equivalent to:

def compareAndSet(ov: T, nv: T):
Boolean = this.synchronized {
if (!(this.get eq ov)) false else {
this.set (nv)
true

})

Lock-free programming

9/36

Back to Example 1 (getUniqueld)

Need to keep-on-trying

Looks like busy-waiting, but it is
much better

Here: using (cheap) recursion
instead of a loop

@tailrec def getUniqueId(): Long
val 0l1dUid = uid.get
val newUid = o01dUid + 1
if (uid.compareAndSet (o0ldUid,
newUid)) newUid
else getUniqueId ()
}

Lock-free programming

= |Lock-free programs: without locks
(With synchronized)

= Achieved using atomic variables (and
some re-trying)

= No locks, no deadlocks...

© NemaMoeia & JoséProsmga Lock-free programming 113

= |Lock-free programs: without locks
(With synchronized)
= Achieved using atomic variables (and
some re-trying)
= No locks, no deadlocks...
= (almost):
= lock-free = use atomic variables

(for atomicity)
= use atomic variables = lock-free

© NemaMoeia & JoséProsmga Lock-free programming 113

Lock-free programs: without locks

(VWth synchronized)

Achieved using atomic variables (and
some re-trying)

No locks, no deadlocks...

(almost):

= |ock-free = use atomic variables
(for atomicity)
= use atomic variables = lock-free

object AtomicLock extends App {

private val lock = new
AtomicBoolean(false)
def mySynchronized(body: =>Unit):
Unit = {
while (!lock.compareAndSet(false,
true)) {}
try body finally lock.set(false)
}
var count = 0
for (i<- 0 until 10) execute {
mySynchronized { count += 1 } }
Thread.sleep(1000)
log(s"Count is: $count")

Lock-free programming

11/ 36

Lock-freedom
Given a set of threads and an operation OP.

OP is lock-free if at least one thread always completes OF after a finite number of
steps, regardless of the speed at which different threads progress.

© NemaMoeia & JoséProsmga Lock-free programming 123

= Example 1: getUniqueld()

= Example 2: Logging Bank Transfers
= Example 3: Thread pool

= Example 4: Batman

= Example 5: Concurrent filesystem

© NemaMoeia & JoséProsmga Lock-free programming 133

Filesystem API
T1 is creating F:

Creating

v

1d1 —> ; —> ; —>| ;
e < Copy1ng(1)<_ Copy1ng(2)<_ Copying(3)

T2 cannot copy or delete F

fy

T1& T2 are copying F: v
T3 cannot delete F

Deleting

T1 is deleting F:
T2 cannot copy nor delete F

© NemaMoeia & JoséProsmga Lock-free programming)

Filesystem API
T1 is creating F:

T2 cannot copy or delete F

T1& T2 are copying F:
T3 cannot delete F

T1 is deleting F:
T2 cannot copy nor delete F

e

class
val

}

Entry(val isDir: Boolean) {
state = new AtomicReference[State] (new

sealed trait State

class
class
class
class

Idle extends State

Creating extends State
Copying(val n: Int) extends State
Deleting extends State

Idle)

Lock-free programming

15/ 36

Deleting: prepare (checks for permission) then delete (perform delete)

Copying: aquire (get permission); copy (perform action); then release (give permission)

© NemaMoeia & JoséProsmga Lock-free programming 16/ 36

@tailrec
private def prepareForDelete(entry: Entry): Boolean = {
val sO0 = entry.state.get
sO match {
case i: Idle =>
if (entry.state.compareAndSet(s0O, new Deleting)) true
else prepareForDelete (entry)
case c: Creating =>
logMessage("Filecurrently created, cannot_ delete."); false
case c: Copying =>
logMessage("Filecurrently copied, cannot delete."); false
case d: Deleting =>
false

logMessage: presented later — similar to log, but stores the log message

© NemaMoeia & JoséProsmga Lock-free programming i e

“ABA" problem: two readings of the same value A lead to believe that B was never
present (type of race condition)

Illustrated by a bad acquire-release for Copying, using a mutable n in:
Copying(var n: Int)

© NemaMoeia & JoséProsmga Lock-free programming 1836

def releaseCopy(e: Entry): Copying = e.state.get match {
case c: Copying =>
val nstate = if (c.n == 1) new Idle else new Copying(c.n - 1)
if (e.state.compareAndSet(c, nstate)) c
else releaseCopy(e)

def acquireCopy(e: Entry, c: Copying) = e.state.get match {
case i: Idle =>
c.n =1
if (!e.state.compareAndSet(i, c)) acquireCopy(e, c)
case oc: Copying =>
c.n = oc.n + 1
if (!e.state.compareAndSet(oc, c)) acquireCopy(e, c)

Optimization: reusing previous Copying if possible
~ Nelma Moreira & José Proenca Lock-free programming

19 /36

4

T T2 T T2 T1 T2 T
nstate nstate nstate oc nstate nstate
c c c c c c c
Idle Idle Idle Idle
Entry Copying Entry Copying Entry Copying Entry Copying
state m n[1] state [o] n state [n[2] state [oH—>{ n[2]
* * * *
i i i Copying i Copying
Next CAS by T1 Next CAS by T3 Next CAS by T1 n m Next CAS by T2 n E
Lock-free programming 20 / 36

use fresh objects in AtomicReference

use immutable objects in AtomicReference
avoid re-assigning the same value to an atomic variable

only increment or decrement values of numeric atomic variables (if possible)

© NemaMoeia & JoséProsmga Lock-free programming

21/36

Lazy values

e

= |lazy values: initialized when read
for the first time

= these should not depend-on/modify
state (non-determinism)
= code in singleton objects: lazy

execution

= under the hood: first write uses a
lock — to ensure at most a thread
initialises a lazy value

= stack overflow (sequential code)
can become
deadlock (concurrent code)

object LazyValsCreate extends App {
var x = 5
lazy val y = x+2
execute {log(s"Wrk:, y,=u,%y")}
x = 10
log(s"Main: y =,$y")
// y = 7 or 12 in both cases
Thread.sleep(500)

object LazyValsDeadlock extends App {
object A { lazy val x: Int = B.y }
object B { lazy val y: Int = A.x }
execute { B.y }
A.x

Lazy values

22 /36

Concurrent (mutable) collections

e

import scala.collection._

. . . object CollectionsBad extends App {
= Naive code: arbitrarily returns

val buffer =
different results and exceptions mutable.ArrayBuffer [Int] ()
. i def asyncAdd(numbers: Seq[Int]) =
= Corruption of the internal state execute {
= Possible fixes: buffer ++= numbers
. . . log(s"buffer =, $buffer")
= immutable collections + atomic 3
variables asyncAdd (0 until 10)

asyncAdd (10 until 20)

= mutable collections + synchronized
Thread.sleep(500)

= dedicated libraries

© NemaMoeia & JoséProsmga Concurrent (mutable) collections .

e

= Naive code: arbitrarily returns

different results and exceptions et Besile ., aeililogmien
. . bject CollectionsBad extends A
= Corruption of the internal state object CollectionsBad extends App {
val buffer =
= Possible fixes: mutable.ArrayBuffer [Int] ()

def asyncAdd(numbers: Seq[Int]) =

= immutable collections + atomic
execute {

variables buffer ++= numbers
(does not scale) log(s"buffer =, $buffer")
= mutable collections + synchronized ¥

asyncAdd (0 until 10)

asyncAdd (10 until 20)
may not scale) Thread.sleep (500)

= dedicated libraries }

(assuming collections do not block;

(far better performance and
scalability)

© NemaMoeia & JoséProsmga Concurrent (mutable) collections .

= Concurrent queues

= java.util.concurrent.BlockingQueue interface
= ...ArrayBlockingQueue class (bounded)
= ...LinkedBlockingQueue class (unbounded)

= Concurrent Sets and Maps

= scala.collection.concurrent.Map trait
= java.util.concurrent.ConcurrentHashMap class

© NemaMoeia & JoséProsmga Concurrent (mutable) collections 24/ 36

BlockingQueue API

Operation | Exception |Special value | Timed Blocking
Dequeue |remove(): T |poll(): T poll(t: Long, u: take(): T
TimeUnit): T
Enqueue [add(x:T) |[offer(x:T): [offer(x: T, t: Long, | put(x: T)
Boolean u: TimeUnit)
Inspect element: T |peek: T N/A N/A

Nelma Moreira &

José Proenca

Concurrent (mutable) collections

e

We will compile a queue of messages when logging messages in our file system

class FileSystem(...) {

private val messages = new LinkedBlockingQueue[String]
val logger = new Thread {

setDaemon (true)

override def run() = while (true) log(messages.take())
}
logger.start ()
def logMessage(msg: String): Unit = messages.offer (msg)

val fileSystem = new FileSystem(".") // to be defined later
fileSystem.logMessage("Testing log!")

© NemaMoeia & JoséProsmga Concurrent (mutable) collections

26 / 36

= concurrentQueue.iterator
= can produce inconsistent results
= while traversing and modifying, the iterator can be updated

= (heavier) exceptions create a copy when producing an iterator

© NemaMoeia & JoséProsmga Concurrent (mutable) collections 27/ 36

import scala.collection.convert.decorateAsScala. _
import java.io.File
import org.apache.commons.io.FileUtils // needs "commons-io" in build.sbt

class FileSystem(val root: String) {
val rootDir = new File(root)
val files: concurrent.Map[String, Entryl =
new ConcurrentHashMap() .asScala
for (f <- FileUtils.iterateFiles(rootDir, null, false).asScala)
files.put (f.getName, new Entry(false))

© NemaMoeia & JoséProsmga Concurrent (mutable) collections

28 / 36

Recall the prepareForDelete (entry)

def deleteFile(filename: String): Unit = {
files.get(filename) match {

case None =>

logMessage (s"Path, ’$filename’ does_ not exist!")
case Some(entry) if entry.isDir =>

logMessage (s"Path,,’$filename’ is a directory!")
case Some(entry) => execute {

if (prepareForDelete(entry))

if (FileUtils.deleteQuietly(new File(filename)))
files.remove(filename)

© NemaMoeia & JoséProsmga Concurrent (mutable) collections .

Some complex linearizable methods of concurrent Map FC

Signature Description
putIfAbsent (k: K, v: V): |This atomically assigns the value v to the key k if k is not in the
Option[V] map. Otherwise, it returns the value associated with k.
remove (k: K, v: V): This atomically removes the key k if it is associated to the value
Boolean equal to v and returns t rue if successful.
replace (k: K, v: V): This atomically assigns the value v to the key k and returns the
Option[V] value previously associated with k.
replace (k: K, ov: V, nv: [This atomically assigns the key k to the value nv if k was
V): previously associated with ov and returns t rue if successful.
Boolean
= These use “equals” instead of the = Methods +=, -=, put, update, get,
reference (which CAS does) apply, remove are (non-complex)
= Avoid null as key or valye (often linearizable

used as special values)

Nelma Moreira & José Proenca Concurrent (mutable) collections 30/ 36

Wrapping up our Filesystem
(Example 5)

Recall our broken aquireCopy/releaseCopy methods (ABA problem) — slide19

Qtailrec
private def acquire(entry: Entry): Boolean = {
val sO = entry.state.get
sO match {
case _: Creating | _: Deleting =>
logMessage ("Fileinaccessible , cannot copy."); false
case i: Idle =>
if (entry.state.compareAndSet(sO, new Copying(1))) true
else acquire(entry)
case c: Copying =>
if (entry.state.compareAndSet(sO, new Copying(c.n+1))) true
else acquire(entry)

© NemaMoeia & JoséProsmga Wrapping up our Filesystem (Example 5) o

Same CAS retry-approach for releasing.

Q@tailrec
private def release(entry: Entry): Unit = {
val sO = entry.state.get
sO match {
case c: Creating =>
if (!entry.state.compareAndSet(s0O, new Idle)) release(entry)
case c: Copying =>
val nstate = if (c.n == 1) new Idle else new Copying(c.n-1)
if (lentry.state.compareAndSet(sO, nstate)) release(entry)

© NemaMoeia & JoséProsmga Wrapping up our Filesystem (Example 5)

32/ 36

Finally: wrapper for copying a file.

}

def copyFile(src: String, dest: String): Unit = {

files.get (src) match {
case Some(srcEntry) if !srcEntry.isDir => execute {
if (acquire(srcEntry)) try {
val destEntry = new Entry(isDir = false)
destEntry.state.set(new Creating)
if (files.putIfAbsent(dest, destEntry) == Nomne) try {
FileUtils.copyFile(new File(src), new File(dest))
} finally release(destEntry)
} finally release(srcEntry)
}
}

© NemaMoeia & JoséProsmga Wrapping up our Filesystem (Example 5)

33 /36

Creating and handling processes

= So far: run in a single JVM

= Now: run processes outside JVM
= Why:

© NemaMoeia & JoséProsmga Creating and handling processes 34/ 36

= So far: run in a single JVM

= Now: run processes outside JVM
= Why:

= Some programs do not exist in Scala/Java

© NemaMoeia & JoséProsmga Creating and handling processes 34/ 36

= So far: run in a single JVM

= Now: run processes outside JVM

= Why:
= Some programs do not exist in Scala/Java
= Want to sandbox untrusted code

© NemaMoeia & JoséProsmga Creating and handling processes 34/ 36

= So far: run in a single JVM
= Now: run processes outside JVM
= Why:
= Some programs do not exist in Scala/Java

= Want to sandbox untrusted code
= Performance (running independent code)

 NemaMoeia & JoséProsmga Creating and handling processes 34 /36

= So far: run in a single JVM

= Now: run processes outside JVM

= Why:
= Some programs do not exist in Scala/Java
= Want to sandbox untrusted code
= Performance (running independent code)

Using the scala.sys.process package

 NemaMoeia & JoséProsmga Creating and handling processes 34 /36

import scala.sys.process._

object ProcessRun extends App {
val command = "ls"
val exitcode = command.! // run process (with side effects)
log(s"command exited with status, $exitcode") }

def lineCount(filename: String): Int = {
val output = s"wcy$filename".!! // run and retreive stdout
output.trim.split(",").head.toInt }

object ProcessAsync extends App {
val 1sProcess = "lsy-R,/".run() // run and returns a Process object
Thread.sleep(1000)
log("Timeouty-ykilling, 1s!")
lsProcess.destroy() } // kill a slow process

https://www.scala-lang.org/api/2.13.x/scala/sys/process/ProcessBuilder.html

© NemaMoeia & JoséProsmga Creating and handiing processes

35/ 36

https://www.scala-lang.org/api/2.13.x/scala/sys/process/ProcessBuilder.html

= executor.execute(...) = Filesystem example
= |ock-free programming with atomic = Processes outside JVM
variables

» av.compareAndSet(...)

= ABA problem

= Lazy values & “lazy” objects

= java.util.concurrent.BlockingQueue
= scala.collection.concurrent.Map

= weakly consistent iterators

= custom concurrent data structures

© NemaMoeia & JoséProsmga Creating and handiing processes o

= executor.execute(...) = Filesystem example
= |ock-free programming with atomic = Processes outside JVM
variables
Next

» av.compareAndSet(...)
= ABA problem

= Lazy values & “lazy” objects

» Futures and Promises
» Data-Parallel Collections

= Reactive Programming

= java.util.concurrent.BlockingQueue (Concurrently)

= scala.collection.concurrent.Map = Software Transactional Memory

= weakly consistent iterators s Actors

= custom concurrent data structures

© NemaMoeia & JoséProsmga Creating and handiing processes o

	Overview
	Existing thread pools in Scala
	Lock-free programming
	Lazy values
	Concurrent (mutable) collections
	Wrapping up our Filesystem (Example 5)
	Creating and handling processes

