3. Concurrency in Java and its memory model

Nelma Moreira & José Proenca
Concurrent programming (CC3040) 2024 /2025

CISTER - U.Porto, Porto, Portugal https://fm-dcc.github.io/cp2425

MFORTO @ e, -~

FACULDADE DE CIENCIAS _ bed
K UNIVERSIDADE DO PORTO UNIVERSIDADE DO PORTO Computing Systems

https://fm-dcc.github.io/cp2425

Overview

Blocks of sequential code running concurrently and sharing memory:
What is Scala?

Concurrency in Java and its memory model
Basic concurrency blocks and libraries
Futures and promises

Actor model

Overview

2/ 41

Synchronisation Exchanging information

- Coordination of multiple executions in - Concurrent programs: shared memory
a concurrent system communication

- Mechanisms to order concurrent - Distributed programs: message passing
executions communication

- Mechanisms to exchange information

© NemaMoeia & JoséProsmga e 3/ 8

CPU Core 1 CPU Core 2
Process 1 Process 2 | | Process 3
| Thread 1 | { Thread 1 | | Thread 1 |
| Thread 2 | | Thread 2 | | Thread 2 } T
Memory Memory Memory
reserved reserved reserved M e m 0 ry
for Process 1 for Process 2 ifor Process 3

e

Starting a new JVM instance always creates
only one process.

In that process, multiple threads can run
simultaneously.

Unlike runtimes (e.g. Python), the JVM:
does not implement its custom threads,
maps each Java thread to an OS thread

Overview 4 /41

Managing threads

object ThreadsMain extends App {
val t: Thread =
Thread.currentThread
val name = t.getName
println(s"I am the thread $name")

Using SBT, this prints:
[info] I am the thread sbt-bg-threads-1

In SBT do “set fork := true’
(or add “fork := true” to bqu.sbt)
It will then it prints:

[info] I am the thread main

Managing threads 5 /41

object ThreadsCreation extends App {
class MyThread extends Thread {
override def run(): Unit = {
println("New, thread,running.")
}
}
val t = new MyThread
t.start ()
t.join()
println("New thread,joined.")

}

start eventually causes

run to execute in a new thread;
the OS decides when;

join puts the main thread in a waiting
state, and allows the OS to re-assign the
processor.

Managing threads 6 /41

main thread

Q)
= t
val t = new MyThread +-Z .
D]
t.start() | & '
!
g
t.join() __(.') =
z 3
E o println(”New thread running.”)
=

println(”New thread joined.”)

RUNNING\

def thread(body: =>Unit): Thread = {
val t = new Thread {
override def run() = body
}
t.start ()
t

© NemaMoeia & JoséProsmga Managing threads 3

e

def thread(body: =>Unit): Thread
val t = new Thread {
override def run() = body
}
t.start ()
t

{

Using the thread function

object ThreadsSleep extends App {

val t = thread {
Thread.sleep (1000)
log("New, threadyrunning.")
Thread.sleep(1000)
log("Stillyrunning.")
Thread.sleep(1000)
log("Completed.")

}

t.join ()

log("New,thread joined.")

Managing threads

8/ 41

getting CPU

Acmﬂ'r,'n
I3 State()

e
D OO

Active State

o
% K
& qu.rf}@ o

Waiting for notification

Notification acquired

run() exited

Waiting For
CPU

Terminated [Dead

Life Cycle of a Thread

© NemaMoeia & JoséProsmga Managing threads o

object ThreadsNondeterminism
extends App {
val t = thread {
log("New, thread,running.")

}
log("...")
log("...")
t.join()

log("New, thread joined.")

What to expect?

Managing threads

10 / 41

object ThreadsNondeterminism
extends App {
val t = thread {
log("New,thread running.")

}

log("...")
log("...")
t.join()

log("New, thread joined.")

e

What to expect?

= "New thread joined" printed
always at the end

= Other prints not always in the same
order — nondeterministic execution

Managing threads

10 / 41

e

object ThreadsNondeterminism
extends App {
val t = thread {
log("New,thread running.")

}

log("...")
log("...")
t.join()

log("New, thread joined.")

What to expect?

= "New thread joined" printed
always at the end

= Other prints not always in the same
order — nondeterministic execution

= Common in concurrent applications —
what makes it so hard

= Note: join also forces all memory
writes from the threads before
proceeding

Managing threads 10 / 41

Control of the execution order

action « happens-before (HB) action
means action (3 sees the memory writes of action «
= Program order: « in a thread HB every subsequent [in that program and thread
= Thread start: calling thrd.start() HB any actions of thrd
= Thread termination: « in a thread HB a join() on that thread.
= Transitivity: if « HB 5 and g HB ~, then a HB

© NemaMoeia & JoséProsmga Control of the execution order it

action « happens-before (HB) action
means action (3 sees the memory writes of action «

= Program order: « in a thread HB every subsequent [in that program and thread
= Thread start: calling thrd.start() HB any actions of thrd

= Thread termination: « in a thread HB a join() on that thread.

= Transitivity: if « HB 5 and g HB ~, then a HB

Data race: when a write to memory does not happen-before its intended read.

© NemaMoeia & JoséProsmga Control of the execution order it

= join provides guarantees that other threads terminated

= Not enough — we may want to inform other treads without terminating

Example 1: shared counter for unique IDs

object ThreadsUnprotectedUid extends App {
var uidCount = OL
def getUniqueId() = {
val freshUid = uidCount + 1
uidCount = freshUid
freshUid

What can go wrong?
~ Nelma Moreira & José Proenca Control of the execution order

12 /41

What do you expect?

def printUniqueIds(n: Int): Unit = {

val uids = for (i<- 0 until n)
yield getUniqueId ()

log(s"Generated uids: $uids")

}

val t = thread { printUniqueIds(5) }

printUniquelIds (5)

t.join()

Control of the execution order

13 /41

Race Condition
when the output of a concurrent program depends on how the statements are

scheduled.

def printUniqueIds(n: Int): Unit = {

val uids = for (i<- 0 until n)
yield getUniqueId ()

log(s"Generated uids: $uids")

}

val t = thread { printUniqueIds(5) }

printUniquelIds (5)

t.join()

© NemaMoeia & JoséProsmga Control of the execution order

13 /41

val freshUid = uidCount + 1 ; uidCount = freshUid ; freshUid

main thread t

uidCount: 0
val freshUid = 0 + Ll--—f--mommmmmmmeees

-------------------- eeieet--val freshUid = 0 + 1
uidCount: ©
uidCount = 1---—f=------mmrmmmmennnees
uidCount: 1
------------------------- —+--uidCount =1
uidCount: 1
\ 4 \4

© NemaMoeia & JoséProsmga Control of the execution order o

e

synchronized is:

= a fundamental Scala/Java construct
for atomic executions

= can be called in any object (or
def getUniqueId() =

this.synchronized {
val freshUid = uidCount + 1

uidCount = freshUid
freshUid object

} ® W€ Say obj.synchronized

instance of a class)

= ensures atomic execution wrt the

= acquires the lock/monitor of obj at
the start

= releases the lock/monitor of obj at
the end

© NemaMoeia & JoséProsmga Control of the execution order il

main thread

this.synchronized {

val freshUid

uidCount:

uidCount:

--val freshUid

--uidCount

Control of the execution order

getting CPU

Acmﬂ'r,'n
I3 State()

e
D OO

Active State

o
% K
& qu.rf}@ o

Waiting for notification

Notification acquired

run() exited

Waiting For
CPU

Terminated [Dead

Life Cycle of a Thread

© NemaMoeia & JoséProsmga Control of the execution order i il

= using the synchronized statement has some (not too large) overhead

» not using synchronized can easily lead to errors, even if all seems correct

Find the bug in the next slide...

© NemaMoeia & JoséProsmga Control of the execution order G il

object ThreadSharedStateAccessReordering extends App {
for (i <- 0 until 100000) {
var a = false
var b = false
var x = -1
var y = -1
val tl1 = thread {
a = true
y = if (b) 0 else 1
}
val t2 = thread {
b = true
x = if (a) 0 else 1
}
tl.join()
t2.join ()
assert (! (x==1 && y==1), s"x=$x,,y=$y")
}
}

 NemaMoeia & JoséProsmga Control of the execution order 6

The previous code can raise an error: both x and y can become 1!

JVM can reorder statements in a thread when they seem to be independent.

Because some processors do not always execute instructions in the expected order,
to increase performance.

(Known as “weak memory model")

A synchronized block would solve this:

= also enclosing each assignment in a synchronized block
= synchronized sets up a memory barrier

© NemaMoeia & JoséProsmga Control of the execution order

20 / 41

= every object has a lock

= a running thread can aquire multiple locks from different objects

Example 2: Logging Bank Transfers

object SynchronizedNesting extends App {
import scala.collection._

private val transfers = mutable.ArrayBuffer [String] ()
def logTransfer (name: String, n: Int) = transfers.synchronized {
transfers += s"transfer to,account,’$name’ =, $n"

}

class Account(val name: String, var money: Int)

def add(account: Account, n: Int) = account.synchronized {
account .money += n
if (n > 10) logTransfer (account.name, n)

21/ 41

private val transfers = mutable.ArrayBuffer [String] ()
def logTransfer (name: String, n: Int) = transfers.synchronized {
transfers += s"transfer_ to_account,’$name’ = ,$n"

}

class Account(val name: String, var money: Int)

def add(account: Account, n: Int) = account.synchronized {
account.money += n
if (n > 10) logTransfer (account.name, n)

val jane = new Account("Jane", 100)
val john = new Account("John", 200)
val t1 = thread { add(jane, 5) }
val t2 = thread { add(john, 50) 1}

tl.join(); t2.join(); t3.join()
log(s"---,transfers,---\n$transfers")

val t3 = thread { add(jane, 70) } // will not corrupt Jane’s account

© NemaMoeia & JoséProsmga Control of the execution order

22 /41

action « happens-before (HB) action
means action (3 sees the memory writes of action «

= Program order: « in a thread HB every subsequent (in that program and thread
= Thread start: calling thrd.start() HB any actions of thrd

= Thread termination: « in a thread HB a join() on that thread.

= Transitivity: if « HB 5 and g HB ~, then a HB v

= Monitor locking: unlocking HB every subsequent locking (of the same lock)

© NemaMoeia & JoséProsmga Control of the execution order 55l

Deadlocks

Deadlock
when two or more executions wait for each other before proceeding

= Studied in the first module with prof. Nelma Moreira

= Often caused by locks that are not released at the right time

object SynchronizedDeadlock extends App {
import SynchronizedNesting.Account
def send(a: Account, b: Account, n:
b.synchronized {
a.money -= n
b.money += n

}

// can this go wrong?

Int) = a.synchronized {

© NemaMoeia & JoséProsmga Deadlocks

24 /41

def send(a: Account, b: Account, n: Int) = a.synchronized {

b.synchronized {

a.money -= n
b.money += n
}
}
val 1 = new Account("Lucy", 1000)
val j = new Account("Jim", 2000)
val tl = thread { for (i<- O until 100) send(1l, j, 1) }
val t2 = thread { for (i<- 0 until 100) send(j, 1, 1) }
tl.join(); t2.join()
log(s"a,=_,${a.money}, b,=,${b.money}")
Deadlocks

25 / 41

b.synchronized {

a.money -= n
b.money += n
}
}
val 1 = new Account("Lucy", 1000)

val j = new Account("Jim", 2000)

def send(a: Account, b: Account, n: Int) = a.synchronized {

val tl = thread { for (i<- O until 100) send(1l, j, 1) }
val t2 = thread { for (i<- 0 until 100) send(j, 1, 1) }
tl.join(); t2.join()
log(s"a,=_,${a.money}, b,=,${b.money}")
It works but...
C Nelma Mo & JoskProsmga Deadlocks

25 / 41

b.synchronized {

a.money -= n
b.money += n
}
}
val 1 = new Account("Lucy", 1000)

val j = new Account("Jim", 2000)

def send(a: Account, b: Account, n: Int) = a.synchronized {

val tl = thread { for (i<- O until 100) send(1l, j, 1) }
val t2 = thread { for (i<- 0 until 100) send(j, 1, 1) }
tl.join(); t2.join()
log(s"a,=_,${a.money}, b,=,${b.money}")
It works but... it can deadlock
Deadlocks

25 / 41

= always acquire locks in the same order

= need a total order on locks
= we can use the getUniqueld (Example 1)

import SynchronizedProtectedUid.getUniquelId
class Account(val name: String, var money: Int) {
val uid = getUniquelId()

© NemaMoeia & JoséProsmga Deadlocks

26 / 41

= always acquire locks in the same order

= need a total order on locks
= we can use the getUniqueld (Example 1)

import SynchronizedProtectedUid.getUniquelId
class Account(val name: String, var money: Int) {
val uid = getUniquelId()

def send(al: Account, a2: Account, n: Int) {
def adjust() {
al.money -= n
a2.money += n
}
if (al.uid < a2.uid) al.synchronized{ a2.synch
else a2.synchronized{ al.synch

ronized{ adjust() }}
ronized{ adjust () }}

Deadlocks

26 / 41

Guarded blocks

Guarded block (for us)
a block of code that waits for a condition before running in a thread

Example 3: Thread pool with a queue of tasks
= Creating new threads in Java is expensive and avoidable
= Usually we re-use threads, by maintaining a set of waiting threads

= This set is call a thread pool

= Scala already provides thread pools
= We first create our own

© NemaMoeia & JoséProsmga Guarded blocks 577 il

import scala.collection._
object SynchronizedBadPool extends App {

private val tasks = mutable.Queue[()=>Unit]()

val worker = new Thread {
def poll(): Option[()=>Unit] =
tasks.synchronized {
if (tasks.nonEmpty) Some(tasks.dequeue())

worker .setName ("Worker")
worker .setDaemon (true)

worker .start ()

def asynchr(body: =>Unit) =
tasks.synchronized {
tasks.enqueue (()=>body)

else None
} asynchr{ log("Hello") }
asynchr{ log(",world!")}
override def run() = while (true) Thread.sleep (5000)
poll () match { ¥
case Some (task) => task()
case None =>
}
}
Nelma Moreira & José Proenca Guarded blocks 28 /

41

Daemon thread
= not the default

= have lower priority
= terminated automatically when JVM terminates

= in other words, do not prevent the JVM from terminating

(the JVM terminates when ‘normal’ tasks terminate)

 NemaMoeia & JoséProsmga Guarded blocks il

Busy-waiting is bad
= needlessly uses processor power (and drains the battery)

= after executing the previous code the worker will keep on running (unless you set
in SBT set fork := true,)

= in general, we want the worker to enter a waiting state

 NemaMoeia & JoséProsmga Guarded blocks 2l

synchronized + wait + notify

= these are methods that every Java/Scala object has
= wait:
= needs the lock

= puts the thread in a waiting state
= releases the lock until activation

= notify:
= needs the lock
= activates all waiting threads

© NemaMoeia & JoséProsmga Guarded blocks 5

synchronized + wait + notify

= these are methods that every Java/Scala object has
= wait:
= needs the lock

= puts the thread in a waiting state
= releases the lock until activation

= notify:
= needs the lock
= activates all waiting threads
= Note that the JVM can decide to call wait on its own — spurious wakeups —
needing to re-enter the wait

© NemaMoeia & JoséProsmga Guarded blocks 5

object SynchronizedGuardedBlocks extends App {
val lock = new AnyRef
var message: Option[String] = None
val greeter = thread {
lock.synchronized {
while (message == None) lock.wait() // non-busy waiting for a message
log(message.get) // it will eventually log!

}
lock.synchronized {

message = Some ("Hello!")

lock.notify() // awakes the (possibly) locked thread
}

greeter. join ()

© NemaMoeia & JoséProsmga Guarded blocks

32 /41

e

import scala.collection._ Worker.start ()
object SynchronizedPool extends App {
private val tasks = mutable.Queue[()=>Unit] () def asynchr(body: =>Unit) =
tasks.synchronized {
object Worker extends Thread { tasks.enqueue (()=>body)
setDaemon (true) // now notifying
def poll() = tasks.synchronized { tasks.notify ()
while (tasks.isEmpty) tasks.wait () ¥
// now using wait
tasks.dequeue () asynchr{ log("Hello") }
¥ asynchr{ log(",world!")}
override def run() = while (true) { Thread.sleep(500)
val task = poll() }
task ()
}
}

 NemaMoeia & JoséProsmga Guarded blocks o5

= Our Worker can run forever (while-true)
= Terminates when the JVM terminates (daemon)

= Worker can be terminated earlier while waiting with Worker.interrupt ()

"~ Nelma Moreira & José Proenca Guarded blocks 34 /41

= Our Worker can run forever (while-true)
= Terminates when the JVM terminates (daemon)

= Worker can be terminated earlier while waiting with Worker.interrupt ()

This triggers:

= If it was waiting: an InterruptedException that can be handled
= If it was not waiting: no exception and a flag Worker.isInterrupted becomes true

"~ Nelma Moreira & José Proenca Guarded blocks 34 /41

= Our Worker can run forever (while-true)
= Terminates when the JVM terminates (daemon)

= Worker can be terminated earlier while waiting with Worker.interrupt ()

= This triggers:

= If it was waiting: an InterruptedException that can be handled
= If it was not waiting: no exception and a flag Worker.isInterrupted becomes true

= Interrupts are needed if a thread does not awake with notify (e.g., it is doing
blocking 1/0)

© NemaMoeia & JoséProsmga Guarded blocks 2 il

object Worker extends Thread {

var terminated = false

// "manually" terminate when asked

def poll(): Option[() => Unit] = tasks.synchronized {
while (tasks.isEmpty && !terminated) tasks.wait()
if (!terminated) Some(tasks.dequeue()) else None

import scala.annotation.tailrec

@tailrec override def run() = poll() match {
case Some (task) => task(); run()
case None =>

}

// "manually" ask to terminate

def shutdown() = tasks.synchronized {
terminated = true
tasks.notify ()

}

}

 NemaMoeia & JoséProsmga Guarded blocke 25l

= using the @volatile annotation

= can be [atomically read] and [atomically modified]

= mostly used as status flag

= are never reordered in a thread

= writes are immediately visible to other threads

= very cheap to read

= not enough in many situations (e.g., getUniqueID)

= enough for previous example — Slide 19

© NemaMoeia & JoséProsmga Guarded blocks o

object Volatile extends App {
class Page(val txt: String, var position: Int)

val pages = for (i<- 1 to 5) yield

new Page("Na" * (100 - 20 * i) + " Batman!", -1)
Q@volatile var found = false
for (p <- pages) yield thread {
var i = 0 //
while (i < p.txt.length && !found) //
if (p.txt(i) == 217) { // Separate
p.position = i // thread
found = true //
} else i += 1 //

}
while (!found) {}
log(s"results: ${pages.map(_.position)}")

© NemaMoeia & JoséProsmga Guarded blocks

37 /41

The Java Memory Model overview

action « happens-before (HB) action 3
means action (3 sees the memory writes of action «

= Program order: « in a thread HB every subsequent (3 in that program and thread
= Thread start: calling thrd.start() HB any actions of thrd

= Thread termination: « in a thread HB a join() on that thread.

= Transitivity: if « HB 8 and 8 HB ~, then o HB

= Monitor locking: unlocking HB every subsequent locking (of the same lock)

= Volatile fields: writing to a volatile field HB every of its subsequent read

Data race
When a write to memory does not happen-before its intended read.

© NemaMoeia & JoséProsmga The Java Memory Model overview 23

class Foo(final val a: Int,

val b: Int,
c: Int)

// Encoding as Java:
class Foo {

final
final
final
final

private int a$;
private int b$;
private int c$;
public int a()

{ return a$; }
public int b()

{ return b$; }
public Foo(int a,

{ a$

int b,
int c) {
= a; b$ = b; c$ = c;

Final fields: cannot be overridden

val: cannot be updated

vals are final
Objects with only final fields

= do not need synchronisation when shared
(after constructed)

Some collections are immutable (e.g. List),
but contain non-final fields

= need synchronisation when shared

The Java Memory Model overview 39 /41

= Thread.sleep = thr.interrupt()
= thr.start = thr.isInterrupted
® thr.join
® Qvolatile var x
® Jock.synchronized
® Jock.wait

® lock.notify

© NemaMoeia & JoséProsmga The Java Memory Model overview 9 st

e

getting CPU

State()

+
-

Active State

run() exited

Waiting For
CPU

Terminated / Dead

Life Cycle of a Thread

© NemaMoeia & JoséProsmga The Java Memory Model overview i

	Overview
	Managing threads
	Control of the execution order
	Deadlocks
	Guarded blocks
	The Java Memory Model overview

