
Exercises: Futures and Promises

DCC-FCUP, University of Porto

José Proença

Concurrent Programming � Part 2

These exercises are inspired mainly from the book �Learning Concurrent Programming in Scala�. You
are required to implement operations that work correctly in concurrent settings, using Scala's notions
of futures and promises. The exercises are not ordered in any particular order, but some assume earlier
exercises have been done.

We recommand starting with the code that you produced for the exercises for the Java memory
model.

Exercise 1. Re-implement using futures a parallel method, which takes two computation blocks, a
and b, and starts each of them in a new thread. The method must return a tuple with the result values
of both the computations. It should have the following signature:

def parallel[A, B](a: =>A, b: =>B): (A, B)

Do not use explicitly creation of new threads as before. Use the log function when testing your code.

Exercise 2. Re-implement using futures a periodically method, which takes a time interval duration
speci�ed in milliseconds, and a computation block b. The method starts a thread that executes the
computation block b every duration milliseconds, even if the previous computation did not �nish yet. It
should have the following signature:

def periodically(duration: Long)(b: =>Unit): Unit

Exercise 3. Implement and test a SyncVal class using a promise in the internal state with the
following interface:

class SyncVal[T] {

def isEmpty(): Boolean = ???

def get(): T = ???

def put(x: T): Unit = ???

def getWait(): T = ???

}

A SyncVal object can be used to exchange values between two or more threads. When created, the
SyncVar object is empty:

� isEmpty returns true;

� get throws an exception;

� put adds a value to the SyncVal object.

� getWait blocks until it can return a value;

After a value is added to a SyncVal object, we say that it is non-empty:

Exercises: Futures and Promises 2/2

� isEmpty returns false;

� get returns the value;

� put throws an exception.

� getWait also returns the value;

Exercise 4. Consider the code below that gets the content of a webpage as a list of strings, one for
each line.

object WebpageSearch extends App {

/** Gets the text from a given URL as a l i s t of strings . */
def getUrlLines(url: String): List[String] = {

val f = Source.fromURL(url)

try f.getLines.toList finally f.close()

}

/** Finds l ines where a given keyword appears . */
def find(lines: List[String], keyword: String): String =

(for ((line,n) <- lines.zipWithIndex

if line.contains(keyword)))

yield (n,line)

).mkString("\n")

...

}

4.1. Use futures to get the content of the website https://www.w3.org/Addressing/URL/url=spec.txt into
a variable futSpec.

4.2. Calculate a new future futFindTelnet: Future[String] that searches for the keyword "telnet" in
the result of the futSpec using the find method.

4.3. Print (using log) a message upon �nishing to collect the url-specs (saying "reading url-spec

completed" in case of success, and "failed to read url-spec" in case of failure).

4.4. Print (using log) a message with the result from the telnet search once it is received.

