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Fibonacci Numbers

Probably the most famous number sequence, defined by Leonardo
Fibonacci

0,1,1,2,3,5,8,13,21,34,...

Fibonacci Numbers

F (0) = 0
F (1) = 1
F (n) = F (n − 1) + F (n − 2)
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Fibonacci Numbers

How to implement?

Implementing directly from the definition:

Fibonacci (from the definition)

fib(n):
If n = 0 or n = 1 then

return n
Else

return fib(n − 1) + fib(n − 2)

Negative points of this implementation?
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Fibonacci Numbers

Computing fib(5):
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Fibonacci Numbers

Computing fib(5):

For instance, fib(2) is called 3 times!
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Fibonacci Numbers

How to improve?
I Start from zero and keep in memory the last two numbers of the

sequence [this solution uses O(1) memory]

Fibonacci (more efficient iterative version)

fib(n):
If n = 0 or n = 1 then

return n
Else
f1 ← 1
f2 ← 0
For i ← 2 to n do
f ← f1 + f2
f2 ← f1
f1 ← f

return f
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Fibonacci Numbers

Concepts to recall:

I Dividing a problem in subproblems of the same type

I Calculating the same subproblem just once

Can these ideas be used in more ”complicated” problems?

Pedro Ribeiro (DCC/FCUP) Dynamic Programming 2024/2025 7 / 73



Number Pyramid

”Classic” problem from the 1994 International Olympiad in
Informatics

Compute the path, starting on the top of the pyramid and ending on
the base, with the biggest sum. In each step we can go diagonally
down and left or down and right.
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Number Pyramid

Two possible paths:

Constraints: all the numbers are integers between 0 and 99 and the
number of lines in the pyramid is at most 100.
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Number Pyramid

How to solve the problem?

Idea: a greedy algorithm? Does not work! (can you see why?)

Idea: Exhaustive search (aka ”Brute Force”)
I Evaluate all the paths and choose the best one.

How much time does this take? How many paths exist?

Analysing the temporal complexity:
I In each line we can take one of two decisions: left or right
I Let n be the height of the pyramid. A path corresponds to... n − 1

decisions!
I There are 2n−1 different paths
I A program to compute all possible paths has therefore complexity
O(2n): exponential!

I 299 ∼ 6.34× 1029 (633825300114114700748351602688)
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Number Pyramid

When we are at the top we have two possible choices (left or right):

In each case, we need to have in account all possible paths of the
respective subpyramid.
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Number Pyramid

But what do we really need to know about these subpyramids?

The only thing that matters is the best internal path, which is a
smaller instance of the same problem!

For the example, the solution is 7 plus the maximum between the
value of the best paths in each subpyramid
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Number Pyramid

This problem can then be solved recursively

I Let P[i][j] be the j-th number of the i-th line

I Let Max(i, j) be the best we can do from position (i , j)

1 2 3 4 5

1 7

2 3 8

3 8 1 0

4 2 7 4 4

5 4 5 2 6 5
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Number Pyramid

Number Pyramid (from the recursive definition)

Max(i , j):
If i = n then

return P[i ][j ]
Else

return P[i ][j ] + maximum (Max(i + 1, j), Max(i + 1, j + 1))

To solve the problem we just need to call... Max(1,1)

1 2 3 4 5

1 7

2 3 8

3 8 1 0

4 2 7 4 4

5 4 5 2 6 5
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Number Pyramid

We still have exponential growth!

We are evaluating the same problem several times...
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Number Pyramid

We need to reuse what we have already computed
I Compute only once each subproblem

Idea: create a table with the value we got for each subproblem
I Matrix M[i][j]

Is there an order to fill the table so that when we need a value we
have already computed it?
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Number Pyramid

We can start from the end! (pyramid base)
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Number Pyramid

We can start from the end! (pyramid base)
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Pirâmide de Números

We can start from the end! (pyramid base)
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Number Pyramid

We can start from the end! (pyramid base)
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Number Pyramid

Having in mind the way we fill the table, we can even reuse P[i][j]:

Number Pyramid (polynomial solution)

Compute():
For i ← n − 1 to 1 do

For j ← 1 to i do
P[i ][j ]← P[i ][j ] + maximum (P[i + 1][j ], P[i + 1][j + 1])

With this the solution is in... P[1][1]

Now the time needed to solve the problem only grows polynomially
(O(n2)) and we have an admissible solution for the problem
(992 = 9801)

Memory usage is also O(n2), but we already needed that for reading
the pyramid...
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Number Pyramid

What if we need to know what are the numbers in the best path?
We can use the computed table!
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Number Pyramid - Variations

What do we need to change if we know want to know:

Find the smallest sum path (and not the biggest sum)

Count the number of best paths?
(or paths that follow a certain property)
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Number Pyramid

To solve the number pyramid number we used...

Dynamic Programming
(DP)
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Dynamic Programming

Dynamic Programming

An algorithmic technique, typically used in optimization problems,
which is based on storing the results of subproblems instead of
recomputing them.

Algorithmic Technique: general method for solving problem that
have some common characteristics

Optimization Problem: find the ”best” solution among all possible
solutions, according to a certain criteria (goal function). Normally it
means finding a minimum or a maximum.

Classic trade of space for time
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Dynamic Programming

What are then the characteristics that a problem must present so that it
can be solved using DP?

Optimal substructure

Overlapping subproblems
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Dynamic Programming - Characteristics

Optimal substructure

When the optimal solution of a problem contains in itself solutions for
subproblems of the same type

Example

On the number pyramid number problem, the optimal solution contains in
itself optimal solutions for subpyramids

If a problem presents this characteristic, we say that it respects the
optimality principle.
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Dynamic Programming - Characteristics

Be careful!

Not all problems present optimal substructure!

Example without optimal substructure

Imagine that in the problem of the number pyramid the goal is to find the
path that maximizes the remainder of the integer division between the sum
of the values of the path and 10.

The optimal solution (1→ 5→ 5) does not contain the optimal solution
for the subpyramid shown (5→ 4)
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Dynamic Programming - Characteristics

Overlapping Subproblems

When the search space is ”small”, that is, there are not many subproblems
to solve because many subproblems are essentially equal.

Example

In the problem of the number pyramid, for a certain problem instance,
there are only n + (n − 1) + ... + 1 < n2 subproblems because, as we have
seen, many subproblems are coincident
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Dynamic Programming - Characteristics

Be careful!

This characteristic is also not always present.

Even with overlapping subproblems there are too many subproblems
to solve
or

There is no overlap between subproblems

Example

In MergeSort, each recursive call is made to a new subproblem, different
from all the others.
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Dynamic Programming - Methodology

If a problem presents these two characteristics, we have a good hint
that DP is applicable.

What steps should we then follow to solve a problem with DP?

Guide to solve with DP

1 Characterize the optimal solution of the problem

2 Recursively define the optimal solution, by using optimal solutions
of subproblems

3 Compute the solutions of all subproblems: bottom-up or top-down

4 Reconstruct the optimal solution, based on the computed values
(optional - only if necessary)
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Dynamic Programming - Methodology

1) Characterize the optimal solution of the problem

Really understand the problem

Verify if an algorithm that verifies all solutions (brute force) is not
enough

Try to generalize the problem (it takes practice to understand how
to correctly generalize)

Try to divide the problem in subproblems of the same type

Verify if the problem obeys the optimality principle

Verify if there are overlapping subproblems
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Dynamic Programming - Methodology

2) Recursively define the optimal solution, by using optimal
solutions of subproblems

Recursively define the optimal solution value, exactly and with
rigour, from the solutions of subproblems of the same type

Imagine that the values of optimal solutions are already available
when we need them

No need to code. You can just mathematically define the recursion
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Dynamic Programming - Methodology

3) Compute the solutions of all subproblems: bottom-up

Find the order in which the subproblems are needed, from the
smaller subproblem until we reach the global problem and implement,
using a table

Usually this order is the inverse to the normal order of the recursive
function that solves the problem

Normal solving order

+---------+ --------------> +-----+

|Beginning| | End |

+---------+ <-------------- +-----+

Order when using DP
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Dynamic Programming - Methodology

3) Compute the solutions of all subproblems: top-down

There is a technique, known as ”memoization”, that allows us to
solve the problem by the normal order.

Just use the recursive function directly obtained from the definition
of the solution and keep a table with the results already computed.

When we need to access a value for the first time we need to
compute it, and from then on we just need to see the already
computed result.
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Dynamic Programming - Methodology

4) Reconstruct the optimal solution, based on the computed
values

It may (or may not) be needed, given what the problem asks for

Two alternatives:
I Directly from the subproblems table
I New table that stores the decisions in each step

If we do not need to know the solution in itself, we can eventually
save some space
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Longest Increasing Subsequence (LIS)

Given a number sequence:

7, 6, 10, 3, 4, 1, 8, 9, 5, 2

Compute the longest increasing subsequence (not necessarily
contiguous)

7, 6, 10, 3, 4, 1, 8, 9, 5, 2 (Size 2)

7, 6, 10, 3, 4, 1, 8, 9, 5, 2 (Size 3)

7, 6, 10, 3, 4, 1, 8, 9, 5, 2 (Size 4)
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Longest Increasing Subsequence (LIS)

1) Characterize the optimal solution of the problem

Let n be the size of the sequence and num[i] the i-th number

”Brute force”, how many options? Exponential!

Generalize and solve with subproblems of the same type:
I Let best(i) be the size of the best subsequence starting from the i-th

position

I Base case: the best subsequence from the last position has size... 1!
I General case: for a given i , we can continue to all numbers from i + 1

to n, as long as they are... bigger or equal

F For those numbers, we only need to know the best starting from them!
(optimality principle)

F The best, starting from a position, is necessary for computing all the
positions of lower index! (overlapping subproblems)
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Longest Increasing Subsequence (LIS)

2) Recursively define the optimal solution, by using optimal
solutions of subproblems

n - sequence size

num[i] - number in position i

best(i) - size of best sequence starting in position i

Recursive Solution for LIS Problem

best(n) = 1
best(i) = 1 + max{best(j): i < j ≤ n, num[j ] > num[i ]}

for 1 ≤ i < n
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Longest Increasing Subsequence (LIS)

3) Compute the solutions of all subproblems: bottom-up

Let best[] the table to save the values of best()

LIS Problem - O(n2)

Compute():
best[n]← 1
For i ← n − 1 to 1 do
best[i ]← 1
For j ← i + 1 to n do

If num[j ] > num[i ] and 1 + best[j ] > best[i ] then
best[i ]← 1 + best[j ]

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1
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Longest Increasing Subsequence (LIS)

4) Reconstruct the optimal solution

We will exemplify with an auxiliary table that stores the decisions

Let next[i] be the next position in order to obtain the best solution
from position i (’X’ if it is the last position of the solution).

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

next[i] 7 7 X 5 7 7 8 X X X
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Longest Increasing Subsequence (LIS)

How can we improve from O(n2) to O(n log n)?

LIS Problem - O(n2)

Compute():
best[n]← 1
For i ← n − 1 to 1 do
best[i ]← 1
For j ← i + 1 to n do

If num[j ] > num[i ] and 1 + best[j ] > best[i ] then
best[i ]← 1 + best[j ]

We can change the second loop and transform it into binary search
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Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 10

num[index[i]] 2

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value

Pedro Ribeiro (DCC/FCUP) Dynamic Programming 2024/2025 43 / 73



Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 9

num[index[i]] 5

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value

Pedro Ribeiro (DCC/FCUP) Dynamic Programming 2024/2025 44 / 73



Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 8

num[index[i]] 9

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value
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Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 8 7

num[index[i]] 9 8

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value
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Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 8 7 6

num[index[i]] 9 8 1

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value
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Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 8 7 5

num[index[i]] 9 8 4

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value
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Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 8 7 5 4

num[index[i]] 9 8 4 3

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value
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Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 3 7 5 4

num[index[i]] 10 8 4 3

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value
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Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 3 7 2 4

num[index[i]] 10 8 6 3

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value
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Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 3 7 1 4

num[index[i]] 10 8 7 3

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value
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Longest Increasing Subsequence (LIS)

Let index(i) be the index k of the largest value num[k] such that
exists an increasing sequence of length i starting in that position k

Let index[] be a table storing those values:

i 1 2 3 4 5 6 7 8 9 10

num[i] 7 6 10 3 4 1 8 9 5 2

best[i] 3 3 1 4 3 3 2 1 1 1

index[i] 3 7 1 4

num[index[i]] 10 8 7 3

At each of our n iterations we can just binary search on
num[index [i ]] for the best continuation our current value

Each of the n iterations takes log n (one binary search), and so our
total complexity is O(n log n)
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0-1 Knapsack

0-1 Knapsack Problem

Input: A backpack of capacity C
A set of n materials, each one with weight wi and value vi

Output: The allocation of materials to the backpack that maximizes the
transported value.

The materials cannot be ”broken” in smaller pieces, that is, for a given
material i we can either take it all (xi = 1) or we leave it all (xi = 0)

What we want is therefore to obey the following constraints

The materials fit in the backpack (
∑
i
xiwi ≤ C )

The value transported is the maximum possible (maximize
∑
i
xivi )
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0-1 Knapsack

A greedy solution will not work on this integer case

Input Example

Input: 5 objects and C = 11
i 1 2 3 4 5

wi 1 2 5 6 7
vi 1 6 18 22 28

vi/wi 1 3 3.6 3.66 4

I Choosing max ratio first will result in {1, 2, 7} with a value of 35
I Choosing max value first will also result in {1, 2, 7} with a value of 35
I Choosing min weight first will result in {1, 2, 5} with a value of 25
I ...
I None of these is optimal: we could get a value of 40 with {3, 4}
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0-1 Knapsack

1) Characterize the optimal solution of the problem

”Brute force”, how many options? Exponential (2n)!

Let’s first consider the unbounded case
(no limit on number of items of each type)

In this unbounded case we could generalize in the following way:
I Let best(i) be the best value we can get for capacity i

I Base case: best(0) = 0 (obviously)
I General case: for a given i , we can simple see all possible items and

get the best if we insert that item:
best(i) = max (vj + best(i − wj) : 1 ≤ j ≤ n,wj ≤ i) for 1 ≤ i ≤ C

But how can we limit the amount of items of each type?
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0-1 Knapsack

1) Characterize the optimal solution of the problem

Let’s add more information to our DP state

I Let best(i, j) be the best value we can get for capacity j using only the
first i materials

I For computing the values of a given best(i , j) we can now simply use
the values of previously computed best(i − 1, k)

I Let’s put all the pieces into place...
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0-1 Knapsack

2) Recursively define the optimal solution

n - number of materials
wi - weight of material i
vi - value of material of material i
C - capacity of backpack
best(i,j) - maximum possible value for capacity j using the first i
materials

Recursive Solution for 0-1 Knapsack

best(0, j) = 0 for 0 ≤ j ≤ C

best(i , j) = best(i − 1, j) if (wi > j)
best(i , j) = max {best(i − 1, j), best(i − 1, j − wi ) + vi} if (wi ≤ j)

for 1 ≤ i ≤ n, 0 ≤ j ≤ C

The desired result is: best(n,C)
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0-1 Knapsack

Let’s see a table of results to better understand the DP formulation:

Input Example

Input: n = 5 and C = 11
i 1 2 3 4 5

wi 1 2 5 6 7
vi 1 6 18 22 28

Capacity
Items 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0 1 6 7 7 7 7 7 7 7 7 7

{1,2,3} 0 1 6 7 7 18 19 24 25 25 25 25

{1,2,3,4} 0 1 6 7 7 18 22 24 28 29 29 40

{1,2,3,4,5} 0 1 6 7 7 18 22 28 39 34 35 40
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0-1 Knapsack

3) Compute the solutions of all subproblems: bottom-up

Let best[][] be the matrix that stores the values of the DP states

0-1 Knapsack Problem - O(n × C )

Compute():
For j ← 0 to C do
best[0][j ]← 0

For i ← 1 to n do
For j ← 0 to C do

If weight[i ] > j
best[i ][j ]← best[i − 1][j ]

Else
best[i ][j ]← max(best[i − 1][j ],

best[i − 1][j − weight[i ]] + value[i ])
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0-1 Knapsack

4) Reconstruct the optimal solution

If needed we could store for each position how we obtained its value:
I We either used current item or we did not use it

i 1 2 3 4 5

wi 1 2 5 6 7
vi 1 6 18 22 28

Capacity
Items 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0 1 6 7 7 7 7 7 7 7 7 7

{1,2,3} 0 1 6 7 7 18 19 24 25 25 25 25

{1,2,3,4} 0 1 6 7 7 18 22 24 28 29 29 40

{1,2,3,4,5} 0 1 6 7 7 18 22 28 39 34 35 40
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0-1 Knapsack

Can we improve memory usage from the O(n× C) bound?

Yes: each row of the table only need the values of another row

We could use O(C ) memory by simply just storing previous row

In fact, if we carefully consider the order in which we compute the
values, we can simply just store one row:

I Let best[] be the array that stores the current row

0-1 Knapsack Problem - O(n × C ) time, O(C ) memory

Compute():
For j ← 0 to C do
best[j ]← 0

For i ← 1 to n do
For j ← C downto 0 do

If weight[i ] ≤ j
best[j ]← max(best[j ], best[j − weight[i ]] + value[i ])
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0-1 Knapsack variants

There are many possible variants for knapsack problem.

Subset sum
I Given a set S of integers and value K , verify if we can obtain a subset

of S that sums to K
I Ex: S = {1, 3, 5, 10}

F K = 8 has answer ”yes” because 3 + 5 = 8
F K = 7 has answer ”no” because no subset of S has sum 7

I It’s the ”same” as knapsack if we disregard values and just consider if a
certain weight is achievable:

si = i-th element of set S
sum(i , j) = is sum j achievable using the first i items? (T/F)

sum(0, 0) = T
sum(0, j) = F for 1 ≤ j ≤ K

sum(i , j) = sum(i − 1, j) OR (sum(i − 1, j − si ) AND si ≤ j)
for 1 ≤ i ≤ n, 0 ≤ j ≤ K
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0-1 Knapsack variants

There are many possible variants for knapsack problem.

Minimum number of coins
I Given a set S of coins and value K , discover minimum amount of coins

to form quantity K (assume it is possible to form any quantity)
There is a limited amount of any given coin value

I Ex: S = {1, 10, 25}
F K = 8 has answer 4 because 10 + 10 + 10 + 10 = 4

I Greedy algorithm does not work (the above is a counter-example)

I It’s the ”same” as unbounded knapsack if we consider all values to be
the same and we now try to minimize total value

si = i-th element of coin set S
coins(i) = minimum amount of coins to form quantity i

coins(0) = 0
coins(i) = min{ 1 + coins(i − sj): sj ≥ i , 1 ≤ j ≤ n }

for 1 ≤ i ≤ K
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Edit Distance

Let’s look at another problem, this time with strings:

Edit Distance Problem

Consider two words w1 and w2. Our goal is to transform w1 in w2 using
only 3 types of transformations:

1 Remove a letter

2 Insert a letter

3 Substitute one letter with another one

What is the minimum number of transformations that we have to do
turn one word into the other? This metric is known as edit distance (ed).

Example

In order to turn ”gotas” into ”afoga” we need 4 transformations:
(1) (3) (3) (2)

gotas → gota → fota → foga → afoga
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Edit Distance

1) Characterize the optimal solution of the problem

Let ed(a,b) be the edit distance between a and b

Let ”” be the empty word

Are there any simple cases?
I Clearly ed(””,””) is zero
I ed(””,b), for any word b? It is the size of word b (we need to make

insertions)
I ed(a,””), for any word a? It is the size of word a (we need to make

removals)

And in the other cases? We must try dividing the problem in
subproblems, where we can decide based on the solution of the
subproblems.
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Edit Distance

None of the words is empty

How can equalize the end of both words?
I Let la be the last letter of a and a′ the remaining letters of a
I Let lb be the last letter of b and b′ the remaining letters of b

If la = lb, then all that is left is to find the edit distance between a′

and b′ (a smaller instance of the same problem!)

Otherwise, we have three possible movements:
I Substitute la with lb. We spend 1 transformation and now we need

the edit distance between a′ and b′.
I Remove la. We spend 1 transformation and now we need the edit

distance between a′ and b.
I Insert lb at the end of a. We spend 1 transformation and now we need

the edit distance between a and b′.
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Edit Distance

2) Recursively define the optimal solution

|a| and |b| - size (length) of words a and b

a[i] and b[i] - letter on position i of words a and b

ed(i,j) - edit distance between the first i letters of a and the first j
letters of b

Recursive solution for Edit Distance Problem

ed(i , 0) = i , for 0 ≤ i ≤ |a|
ed(0, j) = j , for 0 ≤ j ≤ |b|

ed(i , j) = min(ed(i − 1, j − 1) + {0 if a[i ] = b[j ], 1 if a[i ] 6= b[j ]},
ed(i-1, j) + 1,
ed(i, j-1) + 1)

for 1 ≤ i ≤ |a| and 1 ≤ j ≤ |b|
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Edit Distance

3) Compute the solutions of all subproblems: bottom-up

Edit Distance (polynomial solution)

Compute():
For i ← 0 to |a| do ed [i ][0]← i
For j ← 0 to |b| do ed [0][j ]← j

For i ← 1 to |a| do
For j ← 1 to |j | do

If (a[i ] = b[j ] then valor ← 0
Else valor ← 1
ed [i ][j ] = minimum( ed [i − 1][j − 1] + value,

ed [i − 1][j ] + 1,
ed [i ][j − 1] + 1)
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Edit Distance

Let’s see the table for the edit distance between ”gotas” and ”afoga”:
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Edit Distance

If we needed to reconstruct the solution
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Edit Distance Variants

There are many possible variants for the edit distance problem.
Here is perhaps the most common (and classical one):

Longest Common Subsequence Problem (LCS)
I Given two strings, find the length of the longest subsequence (not

necessarily contiguous) common to both strings
I Ex: LCS(”ABAZDC”, ”BACBAD”) = 4 [corresponding to ”ABAD”]

I It’s the ”same” as edit distance if no swapping is allowed (only
additions and deletions). Suppose that the strings are a and b:

LCS(i , 0) = LCS(0, j) = 0

LCS(i , j) = LCS(i − 1, j − 1) + 1 if a[i ] = b[j ]
LCS(i , j) = max(LCS(i − 1, j), LCS(i , j − 1)) if a[i ] 6= b[j ]

for 1 ≤ i ≤ |a| and 1 ≤ j ≤ |b|
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Training

Do you want to train with real exercises for which you can submit code?

CSES:
https://cses.fi/problemset/

CodeForces:
https://codeforces.com/problemset?tags=dp
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