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Overview

• Measuring precisely performance of algorithms
• Measuring asymptotically performance of algorithms
• Analysing recursive functions
• Measuring precisely the average time of algorithms
• Next: analysis of sequences of operations (amortised analysis)
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(from PhD comics: https://phdcomics.com/comics/archive.php?comicid=1047)
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Recall goal

int count = 0;
for (int i=0; i<n; i++)

if (v[i] == 0) count ++

RAM
• worst-case: T (n) = 5 + 5n
• best-case: T (n) = 5 + 4n

#array-accesses + #count-increments
• worst-case: T (n) = 2n
• best-case: T (n) = n
• average-case:

T (n) = n +∑
0≤r<n P(v [r ] = 0)
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Preliminaries: series



Recall arithmetic series

n∑

i=1
i = 1 + 2 + . . . + n = n(n + 1)

2
b∑

i=a
i = a + (a + 1) + . . . + b = (a − b + 1)(a + b)

2

Intuition [
number of elements

] × [
middle value

]
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Recall geometric series I

n∑

i=0
x i = 1 + x + x2 + . . . + xn = xn+1 − 1

x − 1

Proof
Let S = ∑n

i=0 x i . Then:

S × x = x + x2 + . . . + xn+1

Hence we know
[
(S × x) − S = xn+1 − 1

]
.

Simplifying we get
[
S = xn+1−1

x−1

]
.
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Recall geometric series II

n∑

i=1
i × x i−1 = x + (2 × x2) + . . . + (n × xn) = n × xn+1 − (n + 1) × xn + 1

(x − 1)2

Proof
Recall

[
S = ∑n

i=1 x i = xn+1−1
x−1

]
. Derive both:

S ′ = (1 + x + x2 + . . . + xn)′ = 0 + 1 + 2x + . . . + n × xn−1 =
n∑

i=1
i × x i−1

(
xn+1 − 1

x − 1

)′
= n × xn+1 − (n + 1) × xn + 1

(x − 1)2
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Calculating average cases



Average case

The average time to execute an algorithm is given as the expected value for its
execution, assuming that each run r has a cost cr and a probability pr .

Expected cost

T (N) =
∑

r
pr × cr
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Example: Linear search

int lsearch (int x, int N, int v[])
{

// pre: sorted array v
int i;
i =0;
while ((i<N) && (v[i] < x))

i ++;
if ((i==N) || (v[i] != x))

return ( -1);
else return i;

}

• Count array accesses
• Best case: T (N) = 2
• Worst case: T (N) = N + 1
• Average case: T (N) = . . .

• assuming array with uniformly
distributed values and a random x

• same probability to do
0, 1, . . . , N − 1 cycle iterations

• Hence: N different runs, each
• probability: 1/N
• cost: #cycles + 1
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while ((i<N) && (v[i] < x))
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T (N) =
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Example: Linear search

int lsearch (int x, int N, int v[])
{

// pre: sorted array v
int i;
i =0;
while ((i<N) && (v[i] < x))

i ++;
if ((i==N) || (v[i] != x))

return ( -1);
else return i;

}

T (N) =
N∑

i=1

1
N × (i + 1)

= 1
N ×

N∑

i=1
(i + 1)

= 1
N ×

N+1∑

i=2
i

= 1
N × N × (N + 3)

2
= N + 3

2
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Binary search

int bsearch (int x, int N, int v[])
{

int i,s,m;
i=0; s=N -1;
while (i<s){

m= (i+s)/2;
if (v[m] == x) i = s = m;
else if (v[m] > x) s = m -1;
else i = m+1;

}
if ((i>s) || (v[i] != x))

return ( -1);
else return i;

}

Ex. 4.1: Calculate best/worst/average
cases

• Count array accesses / nr. cycles
• Best case: T (N) =?
• Worst case: T (N) =?
• Average case: T (N) =?
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Binary search: Intuition for worst case

• Example: N=15, worst case
• 1st cycle: check v[N/2] (7 remaining)
• 2nd cycle: check v[N/4] (or v[3N/4] – 3 remaining)
• 3rd cycle: check v[N/8] (or v[3N/8]... – 1 remaining)
• after: check v[N/16] (or v[3N/16]...) if equal to x

• N=15, (3 cycles) ! 4 “cycles”
• In general: c cycles for 2c − 1 elements
• ... i.e., N = 2c − 1 ≡ c = log2(N + 1)
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Binary search: Intuition for average case

• In an array of size N, there are N+1 cases (finding at a given position, or not
finding).

• Assume N+1 cases have equal probability (!)
• Example: N=15

• 1 cycle: find at v[N/2] – prob. 1
N+1

• 2 cycles: find at v[N/4] or v[3N/4] – prob. 2
N+1

• 3 cycles: find at v[N/8] or (...) – prob. 4
N+1

• after: find (or not) at v[N/16] (..) – prob. 8
N+1

• N=15, average cycles: 1 × 1
N+1 + 2 × 2

N+1 + 3 × 4
N+1 + 4 × 8

N+1

• In general: 1 × 1
N+1 + . . . + log2(N + 1) × 2log2(N+1)−1

N+1

• ... i.e., T (N)) = ∑log2(N+1)
i=1 i × 2i−1

N+1 = . . .
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Two’s complement

void twoComplement ( char b[], int N)
{

int i = N -1;
while (i >0 && !b[i])

i --;
i --;
while (i >=0) {

b[i] = !b[i];
i--;

}
}

Ex. 4.2: Calculate best/worst/average
cases

• Count nr. bit updates
• Best case: T (N) =?
• Worst case: T (N) =?
• Average case: T (N) =?
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Two’s complement

void twoComplement ( char b[], int N)
{

int i = N -1;
while (i >0 && !b[i])

i --;
i --;
while (i >=0) {

b[i] = !b[i];
i--;

}
}

Ex. 4.3: Calculate best/worst/average
cases

• Count nr. bit updates
• Best case: T (N) =?
• Worst case: T (N) =?
• Average case: T (N) =?

twoComplement(0001) = 1111 – 1 vs -1
twoComplement(0010) = 1110 – 2 vs -2
twoComplement(0011) = 1101 – 3 vs -3

twoComplement(01010000) = 10110000
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Exercises

int maxgrow (int v[], int N) {
int r = 1, i = 0, m;
while (i<N -1) {

m = grow (v+i, N-i);
if (m>r) r = m;
i++;

}
return r;

}

int grow (int v[], int N) {
int i;
for (i=1; i<N; i++)

if (v[i] < v[i -1]) break ;
return i;

}

Ex. 4.4: How many comparison of array elements exist in the average case for grow?
(assume v[i]<v[i-1] has 50% chances of succeeding)

Ex. 4.5: How many comparison of array elements exist in the average case for
maxgrow?
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Exercises @home

void iSort (int v[], int N){
int i, j;
for (i=1; i<N; i++)

for (j=i; j >0 && v[j -1] >v[j];
j--)

swap (v,j,j -1);
}

Ex. 4.6: How many comparison of array elements exist in the average case?
(as before, assume v[j-1]>v[j] has 50% chances of succeeding)
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Quicksort analysis

int partition (int N, int v[]){
int i, j=0;
for (i=0; i<N -1; i++)

if (v[i]<v[N -1])
swap (v,i,j++);

swap (v,N-1,j);
return j ;

}

void quickSort (int N, int v[]){
int p;
if (N >1) {

p = partition (N, v);
quickSort (v, p);
quickSort (v+p+1, N-p -1);

}
}

(See animation at https://visualgo.net/en/sorting)
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Quicksort analysis

Partition
• Comparisons: Tpartition(N) = N − 1 in any case
• Swaps: Tpartition(N) = N in the worst case, 1 in the best case

Quicksort (comparisons)

T (N) =
{

0 if N = 1
N − 1 + T (p) + T (N − 1 − p) if N > 1, where 0 ≤ p < N
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Quicksort – worst case

Quicksort (comparisons) in general

T (N) =
{

0 if N = 1
N − 1 + T (p) + T (N − 1 − p) if N > 1, where 0 ≤ p < N

Quicksort (comparisons) when p = 0

T (N) =
{

0 if N = 1
N − 1 + T (N − 1) if N > 1

T (N) = (N − 1) + (N − 2) + . . . + 2 + 1

=
N−1∑

i=1
i = N(N − 1)

2 = Θ(N2)
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Quicksort – best case

Quicksort (comparisons) in general

T (N) =
{

0 if N = 1
N − 1 + T (p) + T (N − 1 − p) if N > 1, where 0 ≤ p < N

Quicksort when p = N−1
2

T (N) =
{

0 if N = 1
N − 1 + 2T (N−1

2 ) if N > 1

T (N) = ???(use recurrence trees)
= Θ(N × log(N))
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Quicksort – best case
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Quicksort – average case

Quicksort (comparisons) in general

T (N) =
{

0 if N = 1
N − 1 + T (p) + T (N − 1 − p) if N > 1, where 0 ≤ p < N

Quicksort when p can be any with equal probability

T (N) =
{

0 if N = 1
N − 1 +∑N−1

p=0
1
N (T (p) + T (N − p − 1)) if N > 1

N−1∑

p=0

1
N (T (p) + T (N − p − 1)) = 1

N ×
N−1∑

p=0
T (p) + 1

N ×
N−1∑

p=0
T (N − p − 1)

= 1
N ×

N−1∑

p=0
T (p) + 1

N ×
N−1∑

p=0
T (p) = 2

N ×
N−1∑

p=0
T (p)
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Quicksort – average case

Quicksort (comparisons) in general

T (N) =
{
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Quicksort – average case (some math magic)

T (N) = N − 1 +∑N−1
p=0

1
N (T (p) + T (N − p − 1)) = N − 1 + 2

N ×∑N−1
p=0 T (p)

Multiplying by N
N × T (N) = N × (N − 1) + 2 ×∑N−1

p=0 T (p)

Applying for N − 1
(N − 1) × T (N − 1) = (N − 1) × (N − 2) + 2 ×∑N−2

p=0 T (p)

Subtracting each side
N × T (N) − (N − 1) × T (N − 1) =

N × (N − 1) + 2 ×∑N−1
p=0 T (p) − (N − 1) × (N − 2) − 2 ×∑N−2

p=0 T (p)
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Quicksort – average case (some math magic)

Subtracting each side
N × T (N) − (N − 1) × T (N − 1) =

N × (N − 1) + 2 ×∑N−1
p=0 T (p) − (N − 1) × (N − 2) − 2 ×∑N−2

p=0 T (p)

Simplifying
T (N) =

(
2N−1

N

)
+
(

N+1
N

)
× T (N − 1)

= ...

= Θ(N × log(N))
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Quicksort – average case (some math magic)

Subtracting each side
N × T (N) − (N − 1) × T (N − 1) =

N × (N − 1) + 2 ×∑N−1
p=0 T (p) − (N − 1) × (N − 2) − 2 ×∑N−2

p=0 T (p)

Simplifying
T (N) =

(
2N−1

N

)
+
(

N+1
N

)
× T (N − 1)

= ...

= Θ(N × log(N))

Randomised Quicksort – the version usually used – uses a random pivot when
partitioning.
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Randomised Algorithms



slides by Pedro Ribeiro, slides 4
pages 9-13
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Randomized Algorithms

Randomized algorithms
We call an algorithm randomized if its behavior is determined not only by
its input but also by values produced by a random-number generator

Most programming environments offer a (deterministic)
pseudorandom-number generator: it returns numbers that ”look”
statistically random

We typically refer to the analysis of randomized algorithms by talking
about the expected cost (ex: the expected running time)

We can use probabilistic analysis to analyse randomized algorithms
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Basics of Probabilistic Analysis

Consider rolling two dice and observing the results.
We call this an experiment.
It has 36 possible outcomes:
1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-2, 2-3, ..., 6-4, 6-5, 6-6
Each of these outcomes has probability 1/36 (assuming fair dice)

What is the probability of the sum of dice being 7?
Add the probabilities of all the outcomes satisfying this condition:
1-6, 2-5, 3-4, 4-3, 5-2, 6-1 (probability is 1/6)
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Basics of Probabilistic Analysis

In the language of probability theory, this setting is characterized by a
sample space S and a probability measure p.

Sample Space is constituted by all possible outcomes, which are
called elementary events
In a discrete probability distribution (d.p.d.), the probability
measure is a function p(e) (or Pr(e)) over elementary events e such
that:

I p(e) ≥ 0 for all e ∈ S
I
∑
e∈S

p(e) = 1

An event is a subset of the sample space.
For a d.p.d. the probability of an event is just the sum of the
probabilities of its elementary events.
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Basics of Probabilistic Analysis

A random variable is a function from elementary events to integers
or reals:
Ex: let X1 be a random variable representing result of first die and X2
representing the second die.
X = X1 + X2 would represent the sum of the two
We could now ask: what is the probability that X = 7?

One property of a random variable we care is expectation:

Expectation
For a discrete random variable X over sample space S, the expected value
of X is:
E[X ] = ∑

e∈S
Pr(e)X (e)
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Basics of Probabilistic Analysis

In words: the expectation of a random variable X is just its average
value over S, where each elementary event e is weighted according to
its probability.
Ex: If we roll a single die, the expected value is 3.5
(all six elementary events have equal probability).

One possible rewrite of the previous equation, grouping elementary
events:

Expectation (possible rewrite)

E[X ] = ∑
a

Pr(X = a)a
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Las Vegas vs. Monte Carlo

• QuickSort always returns a correct result (a sorted array) but its runtime is a
random variable (with O(n log n) in expectation)

• Some randomized algorithms are not guaranteed to be correct, but their runtime
is fixed.

Las Vegas Algorithms
Randomized algorithms that always output the correct answer, and whose runtimes
are random variables.

Monte Carlo Algorithms
Randomized algorithms that always terminate in a given time bound, but are correct
with at least some (high) probability.
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