4. Average Time and Probabilistic Programs

José Proenca Pedro Ribeiro
Algorithms (CC4010) 2024 /2025

CISTER - U.Porto, Porto, Portugal https://fm-dcc.github.io/alg2425

[MPORTO oy g s e

E FACULDADE DE CIENCIAS Computing Systems
C UNIVERSIDADE DO PORTO

https://fm-dcc.github.io/alg2425

= Measuring precisely performance of algorithms

s Measuring asymptotically performance of algorithms
= Analysing recursive functions

= Measuring precisely the average time of algorithms

= Next: analysis of sequences of operations (amortised analysis)

 AgorthmsoojseFCUP 22

AVERAGE TIME SPENT COMPOSING ONE E-MAIL

PROFESSORS: 1.3 SECONDS

GRAD STUDENTS: 1.3 DAYS

TES, Do m

(EHD)

SR ATTACHED,

(=END)

Mo,
(senp)

JORGEE CHAM B 2008

DEAR (2) PROF. SMImy,
| WAS WOHDERING IF PERHAPS YOU MIGHT HAVE
m&vmmmwm

W, PHRDCOMICS. COM

(from PhD comics: https://phdcomics.com/comics/archive.php?comicid=1047)

Algorithms 2024 /25 @ FCUP

int count = 0;
for (int i=0; i<n; i++)
if (v[i] == 0) count++
RAM #array-accesses + Fcount-increments
= worst-case: T(n) =5+ 5n = worst-case: T(n) =2n
= best-case: T(n) =5+ 4n = best-case: T(n)=n

= average-case:
T(n) = n+Xo<r<n P(v[r] = 0)

 AgorithmsoojseFCUP .

Preliminaries: series

n(n+1)

Zi=1+2+...+n: 5

_ (a—b+1)(a+b)
- 2

i=1
b
Si=a+(a+1l)+...+b

Intuition

[number of elements] x [middle value]

 AgorithmsoojseFCUP Prefiminaries: series 523

Proof

Let S=17(x". Then:

Sxx = x+x2+... +x"1

Hence we know [(S xx)—S = x"1 1}.

Simplifying we get [5 = X:jifl}-

 AgorithmsoojseFCUP Prefiminaries: series 623

n
Z:i><x"_:l = x+2xx)+... +(nxx") =
i=1

nxx™ —(n+1)xx"+1
(x —1)?

Proof
Recall [5 = Sl = %] Derive both:
W .
S o= (I4+x+x+...4+x") = 0+1+2x+...+nxx"1 = S ixx!
i=1
xmt 1Y’ oaxx"™ —(n+1)xx"+1
x—1 n (x —1)?

 AgorithmsoojseFCUP EENE— o

Calculating average cases

The average time to execute an algorithm is given as the expected value for its
execution, assuming that each run r has a cost ¢, and a probability p,.

Expected cost

T(N)=> prxc

 AgorithmsoojseFCUP Calculating average cases 8/ 23

Count array accesses

int lsearch(int x, int N, int v[]) = Best case: T(N) =9
{
// pre: sorted array v = Worst case: T(N) =N+1
int i; T o
o o = Average case: T(N)=...
while ((i<N) && (v[i] < x))
i ++;
if ((i==N) || (v[i] !'= x))
return (-1);
else return 1ij;
¥

 AgorthmsoojseFCUP Calculating average cases 023

Count array accesses
Best case: T(N) =2
Worst case: T(N) =N+ 1

int lsearch(int x, int N, int v[])

{

// pre: sorted array v

int i; T o

R = Average case: T(N)=...

while ((i<N) && (v[il < x)) = assuming array with uniformly
i+ distributed values and a random x

if ((i==N) || (v[il !'= x))

o, (=95 = same probability to do

else return i; 0,1,...,N —1 cycle iterations
} = Hence: N different runs, each

= probability: 1/N
= cost: #cycles + 1

 AgorithmsoojseFCUP Calculating average cases 023

int lsearch(int x, int N, int v[])
{
// pre: sorted array v
int i;
e (R (5 Q) < 29 Noq
while i<N) && (v[i] < x i .
i 4+ T(N):ZNX(’+1)
if ((i==N) || (v[il != x)) =L
return (-1);
else return ij;
¥

 AgorthmsoojseFCUP Calculating average cases 023

int lsearch(int x, int N, int v[])

{

// pre: sorted array v

int i;

3 =0

while ((i<N) && (v[i]l < x))
i ++;

if ((i==N) || (v[i] !'= x))
return (-1);

else return ij;

N
T(N):Zﬁx(i—i—l)

i=2
1 Nx(N+3)
N 2
_N+3

2

Calculating average cases 9 /23

int bsearch(int x, int N, int v[])

t Ex.4.1: Calculate best/worst/average
int i,s,m;
i=0; s=N-1; cases
while (i<s){
m= (i+s)/2;
et et LT e = Count array accesses / nr. cycles
else if (vIml > x) s = m-1; Y o
else i = m+1; = Best case: T(N) ="
}
if ((i>s) |l (v[il t= x)) = Worst case: T(N) ="

-1); T
return (-1) = Average case: T(N) =7

else return 1ij;

 AgorithmsoojseFCUP Calculating average cases 0) 2

s Example: N=15, worst case
= Ist cycle: check v[N/2] (7 remaining)
= 2nd cycle: check v[N/4] (or v[3N/4] — 3 remaining)
= 3rd cycle: check v[N/8] (or v[3N/8]... — 1 remaining)
= after: check v[N/16] (or v[3N/16]...) if equal to x

N=15, (3 cycles) — 4 “cycles”
= In general: ¢ cycles for 2¢ — 1 elements
» e, N=2°—1 = c=logp(N+1)

 AgorthmsoojseFCUP Calculating average cases i

Binary search: Intuition for average case

= In an array of size N, there are N+1 cases (finding at a given position, or not
finding).
= Assume N+1 cases have equal probability (!)
s Example: N=15
= 1 cycle: find at v[N/2] — prob. N+1
= 2 cycles: find at v[N/4] or v[3N/4] — prob

= 3 cycles: find at v[N/8] or (...) — prob. N+1
= after: find (or not) at v[N/16] (..) — prob.

N+1

1
= N=15, average cycles: 1 x ﬁ+2 X m+3 X N—H+4>< NLH

Dlogy(N+1)—1

= In general: 1Xﬁ+"'+/0g2(N+1)XN7H

= .. ie, T(N)) = Z;iglz(Nﬂ) I /2\/:1 _

Algorithms 2024 /25 @ FCUP Calculating average cases

iC

Ex.4.2: Calculate best/worst/average

void twoComplement(char b[], int N)
{ cases
int i = N-1;
while (i>0 && !'b[il)

i ==

i-—; = Count nr. bit updates

Whil[i] (: ?:(Ei]{ = Best case: T(N) ="

. . = Worst case: T(N) ="
} = Average case: T(N) ="

 AgorthmsoojseFCUP Calculating average cases)

Two’s complement FC

void twoComplement(char b[l, int N) Ex. 4.3: Calculate best/worst/average
{ cases
int i = N-1;
while (i>0 && !b[il)
i ==

i--; = Count nr. bit updates

while (i >=0) {
Best case: T(N) =7

b[i]l = !'b[il;
) . = Worst case: T(N) =7
} = Average case: T(N)="
twoComplement (0001) = 1111 - 1 vs-I
twoComplement (0010) = 1110 - 2vs-2
twoComplement (0011) = 1101 - 3wvs-3

twoComplement (01010000) = 10110000

Algorithms 2024 /25 @ FCUP Calculating average cases 13 / 23

int maxgrow(int v[], int N) {
int r = 1, i = 0, m;
while (i<N-1) {
m = grow(v+i, N-i);
if (m>r) r = m;
i++;
}

return r;

int grow(int v[], int N) {
int i;
for (i=1; i<N; i++)
if (v[i] < v[i-1]) break;
return i;

Ex. 4.4: How many comparison of array elements exist in the average case for grow?

(assume v[il<v[i-1] has 50% chances of succeeding)

Ex. 4.5: How many comparison of array elements exist in the average case for

maxgrow’

Calculating average cases

14 / 23

void iSort(int v[], int N){
int i, j;
for (i=1; i<N; i++)
for (j=i; j>0 && v[j-11>v[jl;
J==)
swap(v,j,j-1);

Ex.4.6: How many comparison of array elements exist in the average case?
(as before, assume v[j-11>v[j] has 50% chances of succeeding)

 AgorithmsoojseFCUP Calculating average cases

15 / 23

int partition(int N, int v[]){
int i, j=0;
for (i=0; i<N-1; i++)
if (v[il<v[N-1])
swap(v,i,j++);
swap(v,N-1,3);
return j ;

void quickSort(int N, int v[]){
int p;
if (N>1) {
p = partition(N, v);
quickSort (v, p);
quickSort (v+p+1, N-p-1);

(See animation at https://visualgo.net/en/sorting)

Calculating average cases

16 / 23

https://visualgo.net/en/sorting

Partition
= Comparisons: Tpartition(N) = N — 1 in any case

= Swaps: Tpartition(/N) = N in the worst case, 1 in the best case
Quicksort (comparisons)

T(N) = 0 if N =1
U N=1+T()+T(N=1—p) if N>1 where0<p< N

 AgorthmsoojseFcUP Calculating average cases i o

Quicksort (comparisons) in general

T(N) = 0 if N=1
| N=1+T()+T(N—1—p) if N>1 where0<p<N

Quicksort (comparisons) when p =0

T(N) = 0 if N =1
AU N-14T(N-1) ifN>1

 AgorithmsoojseFcUP Calculating average cases)

Quicksort (comparisons) in general

T(N) = 0 if N=1
| N=1+T()+T(N—1—p) if N>1 where0<p<N
Quicksort (comparisons) when p =0
T(N) = 0 !szl
N—1+T(N-1) ifN>1

TIN)=(N-1)+(N-2)+...+2+1
=N—1i _ N(N2— 1) _ @(Nz)

 AgorithmsoojseFCUP Calculating average cases)

Quicksort (comparisons) in general

0 ifN=1
T(N) = .
N—14+T(p)+T(N—-1—-p) if N>1 where0<p<N
Quicksort when p = V-1
0 if N=1
T(N): N—1 .
N—142T(81) ifN>1

 AgorithmsoojseFCUP Calculating average cases 0) 2

Quicksort (comparisons) in general

0 ifN=1
T(N) = .
N—14+T(p)+T(N—-1—-p) if N>1 where0<p<N
Quicksort when p = V-1
0 if N=1
T(N): N—1 .
N—142T(81) ifN>1

T(N) = ???(use recurrence trees)
= O(N x log(N))

 AgorithmsoojseFCUP Calculating average cases 0) 2

Quicksort (comparisons) in general

T(N) = 0 if N=1
| N=1+T()+T(N—1—p) if N>1 where0<p<N

Quicksort when p can be any with equal probability

- 0 if N=1
T(N):{ —1+2N11(T(p)+T(N p—1)) ifN>1

 AgorithmsoojseFcUP Calculating average cases 0

Quicksort — average case

Quicksort (comparisons) in general

T(N) = 0 if N=1
A N=1+T()+T(N=1-p) if N>1, where0< p< N

Quicksort when p can be any with equal probability

v 0 if N=1
(N) = N—1+SV 2 L(T(p)+T(N=p—1)) ifN>1

|M2
==

X
N
~|
S

|

X
N
\i
S

Algorithms 2024 /25 @ FCUP Calculating average cases

20 / 23

Quicksort — average case (some math magic) FC

TN) = N—1+ NI LT(p) + T(N—p—1)) = N—1+2 x SN1T(p)
Multiplying by N
NxT(N) = Nx(N-1)+2x ;5 T(p)

Applying for N — 1
(N-1)xT(N-1) = (N=1)x (N=2)+2 x £)-2T(p)

Subtracting each side

N x T(N)— (N —1)x T(N—1) —
Nx (N=1)+2x S0 T(p) = (N = 1) x (N —2) =2 x 303 T(p)

Algorithms 2024 /25 @ FCUP Calculating average cases 21 /23

Subtracting each side
NxT(N)—(N—-1)x T(N-1) =
Nx (N=1)+2x SN2 T(p) — (N—1) x (N—2) —2 x YN-2T(p)

Simplifying
T(N) = (#5) + (%) x TV -1

= O(N x log(N))

 AgorthmsoojseFCUP Calculating average cases 1

Quicksort — average case (some math magic) FC

Subtracting each side
NxT(N)—(N-1)x T(N-1) =
Nx(N=1)+2x X3 T(p) = (N=1) x (N=2) =2 x L75 T(p)

Simplifying
T(V) = (2F2) + (%) x T(v=1)

= @(N x log(N))

Randomised Quicksort — the version usually used — uses a random pivot when

partitioning.

Algorithms 2024 /25 @ FCUP Calculating average cases 21 /23

Randomised Algorithms

Algorithms 2024 /25 @ FCUP

slides by Pedro Ribeiro, slides 4
pages 9-13

Randomised Algorithms

Randomized Algorithms

Randomized algorithms

We call an algorithm randomized if its behavior is determined not only by
its input but also by values produced by a random-number generator

@ Most programming environments offer a (deterministic)
pseudorandom-number generator: it returns numbers that "look”
statistically random

@ We typically refer to the analysis of randomized algorithms by talking
about the expected cost (ex: the expected running time)

@ We can use probabilistic analysis to analyse randomized algorithms

Pedro Ribeiro (DCC/FCUP) Probabilistic Analysis & Randomized Alg. 2018/2019 9 /53

Basics of Probabilistic Analysis

Consider rolling two dice and observing the results.

We call this an experiment.

It has 36 possible outcomes:
1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-2, 2-3, ..., 6-4, 6-5, 6-6
@ Each of these outcomes has probability 1/36 (assuming fair dice)

@ What is the probability of the sum of dice being 77

Add the probabilities of all the outcomes satisfying this condition:
1-6, 2-5, 3-4, 4-3, 5-2, 6-1 (probability is 1/6)

d 90

L QQQ ° 0
® =

o of

Pedro Ribeiro (DCC/FCUP) Probabilistic Analysis & Randomized Alg. 2018/2019 10 / 53

Basics of Probabilistic Analysis

In the language of probability theory, this setting is characterized by a
sample space S and a probability measure p.

@ Sample Space is constituted by all possible outcomes, which are
called elementary events

@ In a discrete probability distribution (d.p.d.), the probability
measure is a function p(e) (or Pr(e)) over elementary events e such

that:
» p(e) >0forallee S
> 2ple)=1
ecS

@ An event is a subset of the sample space.

@ For a d.p.d. the probability of an event is just the sum of the
probabilities of its elementary events.

Pedro Ribeiro (DCC/FCUP) Probabilistic Analysis & Randomized Alg. 2018/2019 11 / 53

Basics of Probabilistic Analysis

@ A random variable is a function from elementary events to integers
or reals:

Ex: let X7 be a random variable representing result of first die and X5
representing the second die.

X = X1 + X5 would represent the sum of the two

We could now ask: what is the probability that X =77

@ One property of a random variable we care is expectation:

Expectation
For a discrete random variable X over sample space S, the expected value
of X is:

E[X] = e%:s Pr(e)X(e)

Pedro Ribeiro (DCC/FCUP) Probabilistic Analysis & Randomized Alg. 2018/2019 12 / 53

Basics of Probabilistic Analysis

@ In words: the expectation of a random variable X is just its average
value over S, where each elementary event e is weighted according to
its probability.

Ex: If we roll a single die, the expected value is 3.5
(all six elementary events have equal probability).

@ One possible rewrite of the previous equation, grouping elementary
events:

Expectation (possible rewrite)

E[X] = Xa: Pr(X = a)a

Pedro Ribeiro (DCC/FCUP) Probabilistic Analysis & Randomized Alg. 2018/2019 13 / 53

Las Vegas vs. Monte Carlo

= QuickSort always returns a correct result (a sorted array) but its runtime is a
random variable (with O(n log n) in expectation)

= Some randomized algorithms are not guaranteed to be correct, but their runtime
is fixed.

Las Vegas Algorithms
Randomized algorithms that always output the correct answer, and whose runtimes
are random variables.

Monte Carlo Algorithms
Randomized algorithms that always terminate in a given time bound, but are correct
with at least some (high) probability.

Algorithms 2024 /25 @ FCUP Randomised Algorithms

iC

	Preliminaries: series
	Calculating average cases
	Randomised Algorithms

