
3. Counting steps
(Asymptotic analysis)

José Proença Pedro Ribeiro
Algorithms (CC4010) 2024/2025

CISTER – U.Porto, Porto, Portugal https://fm-dcc.github.io/alg2425

https://fm-dcc.github.io/alg2425

Overview

• Checking correctness of algorithms
• Measuring precisely performance of algorithms
• Measuring asymptotically performance of algorithms
• Analysing recursive functions
• Next: beyond worst-/best-case scenarios

• average time of a single operation
• analysis of sequences of operations (amortised analysis)

Algorithms 2024/25 @ FCUP 2 / 24

Motivation

slides by Charles E. Leiserson
pages 3-19

Algorithms 2024/25 @ FCUP Motivation 3 / 24

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.3

Analysis of algorithms

The theoretical study of computer-program
performance and resource usage.

What’s more important than performance?
• modularity
• correctness
• maintainability
• functionality
• robustness

• user-friendliness
• programmer time
• simplicity
• extensibility
• reliability

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.4

Why study algorithms and
performance?

• Algorithms help us to understand scalability.
• Performance often draws the line between what

is feasible and what is impossible.
• Algorithmic mathematics provides a language

for talking about program behavior.
• Performance is the currency of computing.
• The lessons of program performance generalize

to other computing resources.
• Speed is fun!

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.5

The problem of sorting

Input: sequence 〈a1, a2, …, an〉 of numbers.

Example:
Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Output: permutation 〈a'1, a'2, …, a'n〉 such
that a'1 ≤ a'2 ≤ … ≤ a'n .

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.6

Insertion sort
INSERTION-SORT (A, n) ⊳ A[1 . . n]
 for j ← 2 to n
 do key ← A[j]
 i ← j – 1
 while i > 0 and A[i] > key
 do A[i+1] ← A[i]
 i ← i – 1
 A[i+1] = key

“pseudocode”

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.7

Insertion sort
INSERTION-SORT (A, n) ⊳ A[1 . . n]
 for j ← 2 to n
 do key ← A[j]
 i ← j – 1
 while i > 0 and A[i] > key
 do A[i+1] ← A[i]
 i ← i – 1
 A[i+1] = key

“pseudocode”

sorted

i j

key
A:

1 n

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.8

Example of insertion sort
8 2 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.9

Example of insertion sort
8 2 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.10

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.11

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.12

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.13

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.14

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.15

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.16

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.17

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.18

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.19

Running time

• The running time depends on the input: an
already sorted sequence is easier to sort.

• Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.

• Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.

Animation of the sorting algorithm online

https://visualgo.net/en/sorting

Algorithms 2024/25 @ FCUP Motivation 4 / 24

https://visualgo.net/en/sorting

slides by Pedro Ribeiro, slides 2
pages 1-2

Algorithms 2024/25 @ FCUP Motivation 5 / 24

Asymptotic Analysis

Pedro Ribeiro

DCC/FCUP

2018/2019

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 1 / 79

Motivational Example - TSP

Traveling Salesman Problem (Euclidean TSP version)

Input: a set S of n points in the plane
Output: the smallest possible path that starts on a point, visits all other
points of S and then returns to the starting point.

An example:

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 2 / 79

slides by Pedro Ribeiro, slides 2
pages 8-18

Algorithms 2024/25 @ FCUP Motivation 6 / 24

Motivational Example - TSP

How to solve the problem then?

A possible algorithm (exhaustive search a.k.a. ”brute force”)

Pmin ← any permutation of the points in S
For Pi ← each of the permutations of points in S

If (cost(Pi) < cost(Pmin)) then
Pmin ← Pi

retorn Path formed by Pmin

A correct algorithm, but extremely slow!

P(n) = n! = n × (n − 1)× . . .× 1

For instance, P(20) = 2, 432, 902, 008, 176, 640, 000

For a set of 20 points, even the fastest computer in the world would
not solve it! (how long would it take?)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 8 / 79

Motivational Example - TSP

The present problem is a restricted version (euclidean) of one of the
most well known ”classic” hard problems, the Travelling Salesman
Problem (TSP)

This problem has many possible applications
Ex: genomic analysis, industrial production, vehicle routing, ...

There is no known efficient solution for this problem
(with optimal results, not just approximated)

The presented solution has O(n!) complexity
The Held-Karp algorithm has O(2nn2) complexity
(this notation will be the focus of this class)

TSP belongs to the class of NP-hard problems
The decision version belongs to the class of NP-complete problems
(we will also talk about this at the end of the semester)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 9 / 79

An experience - how many instructions

How many instructions per second on a current computer?
(just an approximation, an order of magnitude)

On my notebook, about 109 instructions

At this velocity, how much time for the following quantities of
instructions?

Quant. 100 1000 10000

N < 0.01s < 0.01s < 0.01s

N2 < 0.01s < 0.01s 0.1s

N3 < 0.01s 1.00s 16 min

N4 0.1s 16 min 115 days

2N 1013 years 10284 years 102993 years

n! 10141 years 102551 years 1035642 years

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 10 / 79

An experience: - Permutations

Let’s go back to the idea of permutations

Exemple: the 6 permutations of {1, 2, 3}
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

Recall that the number of permutations can be computed as:
P(n) = n! = n × (n − 1)× . . .× 1
(do you understand the intuition on the formula?)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 11 / 79

An experience: - Permutations

What is the execution time of a program that goes through all
permutations?
(the following times are approximated, on my notebook)
(what I want to show is order of growth)

n ≤ 7: < 0.001s
n = 8: 0.001s
n = 9: 0.016s
n = 10: 0.185s
n = 11: 2.204s
n = 12: 28.460s
. . .
n = 20: 5000 years !

How many permutations per second?
About 107

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 12 / 79

On computer speed

Will a faster computer be of any help? No!
If n = 20→ 5000 years, hypothetically:

I 10x faster would still take 500 years
I 5,000x would still take 1 year
I 1,000,000x faster would still take two days, but

n = 21 would take more than a month
n = 22 would take more than a year!

The growth rate of the execution time is what matters!

Algorithmic performance vs Computer speed

A better algorithm on a slower computer will always win against a worst
algorithm on a faster computer, for sufficiently large instances

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 13 / 79

Why worry?

What can we do with execution time/memory analysis?

Prediction

How much time/space does an algorithm need to solve a problem? How
does it scale? Can we provide guarantees on its running time/memory?

Comparison

Is an algorithm A better than an algorithm B? Fundamentally, what is the
best we can possibly do on a certain problem?

We will study a methodology to answer these questions

We will focus mainly on execution time analysis

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 14 / 79

Random Access Machine (RAM)

We need a model that is generic and independent from the
language and the machine.

We will consider a Random Access Machine (RAM)
I Each simple operation (ex: +, −, ←, If) takes 1 step
I Loops and procedures, for example, are not simple instructions!
I Each access to memory takes also 1 step

We can measure execution time by... counting the number of steps as
a function of the input size n: T (n).

Operations are simplified, but this is useful
Ex: summing two integers does not cost the same as dividing two
reals, but we will see that on a global vision, these specific values are
not important

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 15 / 79

Random Access Machine (RAM)
A counting example

A simple program

int count = 0;

for (int i=0; i<n; i++)

if (v[i] == 0) count++

Let’s count the number of simple operations:
Variable declarations 2
Assignments: 2
”Less than” comparisons n + 1
”Equality” comparisons: n
Array access n
Increment between n and 2n

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 16 / 79

Random Access Machine (RAM)
A counting example

A simple program

int count = 0;

for (int i=0; i<n; i++)

if (v[i] == 0) count++

Total number of steps on the worst case:
T (n) = 2 + 2 + (n + 1) + n + n + 2n = 5 + 5n

Total number of steps on the best case:
T (n) = 2 + 2 + (n + 1) + n + n + n = 5 + 4n

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 17 / 79

Types of algorithm analysis

Worst Case analysis: (the most common)

T (n) = maximum amount of time for any input of size n

Average Case analysis: (sometimes)

T (n) = average time on all inputs of size n

Implies knowing the statistical distribution of the inputs

Best Case analysis: (”deceiving”)

It’s almost like ”cheating” with an algorithm that is fast just for
some of the inputs

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 18 / 79

Next steps

1. Precise analysis: counting operations
2. Approximate analysis – Asymptotic notation(O, Θ, Ω, o, ω)

Algorithms 2024/25 @ FCUP Motivation 7 / 24

Counting operations

Simpler counting

int count = 0;
for (int i=0; i<n; i++)

if (v[i] == 0) count++

RAM
• worst-case: T (n) = 5 + 5n
• best-case: T (n) = 5 + 4n

#array-accesses + #count-increments
• worst-case: T (n) = 2n
• best-case: T (n) = n
• average-case:

T (n) = n +
∑

0≤r<n P(v [r] = 0)

Algorithms 2024/25 @ FCUP Counting operations 8 / 24

Exercises

void bubbleSort(int v[], int N){
int i, j;
for (i=N-1; i>0; i--)

for (j=0; j<i; j++)
if (v[j] > v[j+1])

swap(v,j,j+1);
}

void iSort(int v[], int N){
int i, j;
for (i=1; i<N; i++)

for (j=i; j>0 && v[j-1]>v[j]; j--)
swap(v,j,j-1);

}

Ex. 3.1: What is the best and worst case wrt comparisons between array
elements?

Ex. 3.2: What is the best and worst case wrt swaps?

Ex. 3.3: How many of these operations are performed in both cases?

Algorithms 2024/25 @ FCUP Counting operations 9 / 24

Exercises

int mult1 (int x, int y){
int a, b, r;
a=x; b=y; r=0;
while (a!=0){

r = r+b;
a = a-1;

}
return r;

}

int mult2 (int x, int y){
int a, b, r;
a=x; b=y; r=0;
while (a!=0) {

if (a%2 == 1) r = r+b;
a=a/2;
b=b*2;

return r;
}

Ex. 3.4: In each case, how many primitive operations (+ - *2 /2 %2) are performed
in the worst case?

Note: In mult2, consider the size N as the number of bits used to represent x and y;
e.g., with 5 bits you can represent a positive integer until 31.

Algorithms 2024/25 @ FCUP Counting operations 10 / 24

Exercises

int maxgrow(int v[], int N) {
int r = 1, i = 0, m;
while (i<N-1) {

m = grow(v+i, N-i);
if (m>r) r = m;
i++;

}
return r;

}

int grow(int v[], int N) {
int i;
for (i=1; i<N; i++)

if (v[i] < v[i-1]) break;
return i;

}

Ex. 3.5: What is the best and worst case for maxgrow wrt comparisons of array
elements?

Ex. 3.6: How many comparisons are in each case?

Ex. 3.7: If we replace i++ by i+=m, how many comparisons are in the worst case?
Algorithms 2024/25 @ FCUP Counting operations 11 / 24

Exercises @home

int maxSum(int v[], int N) {
int i, j, r=0, m;
for (i=0; i<N; i++)

for (j=i; j<N; j++) {
m = sum(v,i,j);
if (m>r) r = m;

}
return r;

}

int sum(int v[], int a, int b) {
int r = 0, i;
for (i=a; i<=b; i++)

r=r+v[i];
return r;

}

Ex. 3.8: What is the complexity maxSum wrt accesses to the array?

Algorithms 2024/25 @ FCUP Counting operations 12 / 24

Asymptotic Notation

slides by Pedro Ribeiro, slides 2
pages 19-23

Algorithms 2024/25 @ FCUP Asymptotic Notation 13 / 24

Types of algorithm analysis

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 19 / 79

Asymptotic Notation

We need a mathematical tool to compare functions

On algorithm analysis we use Asymptotic Analysis:

”Mathematically”: studying the behaviour of limits (as n→∞)

Computer Science: studying the behaviour for arbitrary large input
or
”describing” growth rate

A very specific notation is used: O,Ω,Θ, o, ω

It allows to focus on orders of growth

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 20 / 79

Asymptotic Notation
Definitions

f(n) = O(g(n))
It means that c × g(n) is an upper bound of f (n)

f(n) = Ω(g(n))
It means that c × g(n) is a lower bound of f (n)

f(n) = Θ(g(n))
It means that c1 × g(n) is a lower bound of f (n) and c2 × g(n) is an
upper bound of f (n)

Note: ∈ could be used instead of =

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 21 / 79

Asymptotic Notation
A graphical depiction

Θ O Ω

The definitions imply an n from which the function is bounded. The small
values of n do not ”matter”.

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 22 / 79

Asymptotic Notation
Formalization

f(n) = O(g(n)) if there exist positive constants n0 and c such that
f (n) ≤ c × g(n) for all n ≥ n0

f(n) = Ω(g(n)) if there exist positive constants n0 and c such that
f (n) ≥ c × g(n) for all n ≥ n0

f(n) = Θ(g(n)) if there exist positive constants n0, c1 and c2 such
that c1 × g(n) ≤ f (n) ≤ c2 × g(n) for all n ≥ n0

f(n) = o(g(n)) if for any positive constant c there exists n0 such that
f (n) < c × g(n) for all n ≥ n0

f(n) = ω(g(n)) if for any positive constant c there exists n0 such that
f (n) > c × g(n) for all n ≥ n0

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 23 / 79

Examples

Big Oh (O)
3n2 − 100n + 6 =? O(n2)
3n2 − 100n + 6 =? O(n3)
3n2 − 100n + 6 =? O(n)

Big Omega (Ω)
3n2 − 100n + 6 =? Ω(n2)
3n2 − 100n + 6 =? Ω(n3)
3n2 − 100n + 6 =? Ω(n)

Big Theta (Θ)
3n2 − 100n + 6 =? Θ(n2)
3n2 − 100n + 6 =? Θ(n3)
3n2 − 100n + 6 =? Θ(n)

Algorithms 2024/25 @ FCUP Asymptotic Notation 14 / 24

Examples

Big Oh (O)
3n2 − 100n + 6 = O(n2) because 3n2 > 3n2 − 100n + 6
3n2 − 100n + 6 = O(n3) because 0.01n3 > 3n2 − 100n + 6
3n2 − 100n + 6 ̸= O(n) because c · n < 3n2 when n > c

Big Omega (Ω)
3n2 − 100n + 6 =? Ω(n2)
3n2 − 100n + 6 =? Ω(n3)
3n2 − 100n + 6 =? Ω(n)

Big Theta (Θ)
3n2 − 100n + 6 =? Θ(n2)
3n2 − 100n + 6 =? Θ(n3)
3n2 − 100n + 6 =? Θ(n)

Algorithms 2024/25 @ FCUP Asymptotic Notation 14 / 24

Examples

Big Oh (O)
3n2 − 100n + 6 = O(n2) because 3n2 > 3n2 − 100n + 6
3n2 − 100n + 6 = O(n3) because 0.01n3 > 3n2 − 100n + 6
3n2 − 100n + 6 ̸= O(n) because c · n < 3n2 when n > c

Big Omega (Ω)
3n2 − 100n + 6 = Ω(n2) because 2.99n2 < 3n2 − 100n + 6
3n2 − 100n + 6 ̸= Ω(n3) because c · n3 > 3n2 − 100n + 6 for any c > 0
3n2 − 100n + 6 = Ω(n) because 101010n < 3n2 − 100 + 6

Big Theta (Θ)
3n2 − 100n + 6 =? Θ(n2)
3n2 − 100n + 6 =? Θ(n3)
3n2 − 100n + 6 =? Θ(n)

Algorithms 2024/25 @ FCUP Asymptotic Notation 14 / 24

Examples

Big Oh (O)
3n2 − 100n + 6 = O(n2) because 3n2 > 3n2 − 100n + 6
3n2 − 100n + 6 = O(n3) because 0.01n3 > 3n2 − 100n + 6
3n2 − 100n + 6 ̸= O(n) because c · n < 3n2 when n > c

Big Omega (Ω)
3n2 − 100n + 6 = Ω(n2) because 2.99n2 < 3n2 − 100n + 6
3n2 − 100n + 6 ̸= Ω(n3) because c · n3 > 3n2 − 100n + 6 for any c > 0
3n2 − 100n + 6 = Ω(n) because 101010n < 3n2 − 100 + 6

Big Theta (Θ)
3n2 − 100n + 6 = Θ(n2) because O and Ω
3n2 − 100n + 6 ̸= Θ(n3) because O only
3n2 − 100n + 6 ̸= Θ(n) because Ω only

Algorithms 2024/25 @ FCUP Asymptotic Notation 14 / 24

slides by Pedro Ribeiro, slides 2
pages 24-31

Algorithms 2024/25 @ FCUP Asymptotic Notation 15 / 24

Asymptotic Notation
Analogy

Comparison between two functions f and g and two numbers a and b:

f (n) = O(g(n)) is like a ≤ b upper bound at least as good as
f (n) = Ω(g(n)) is like a ≥ b lower bound at least as bad as
f (n) = Θ(g(n)) is like a = b tight bound as good as
f (n) = o(g(n)) is like a < b strict upper b. strictly better than
f (n) = ω(g(n)) is like a > b strict lower b. strictly worst than

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 24 / 79

Asymptotic Notation
A few consequences

f (n) = Θ(g(n))→ f (n) = O(g(n)) and f (n) = Ω(g(n))

f (n) = O(g(n))→ f (n) 6= ω(g(n))

f (n) = Ω(g(n))→ f (n) 6= o(g(n))

f (n) = o(g(n))→ f (n) 6= Ω(g(n))

f (n) = ω(g(n))→ f (n) 6= O(g(n))

f (n) = Θ(g(n))→ g(n) = Θ(f (n))

f (n) = O(g(n))→ g(n) = Ω(f (n))

f (n) = Ω(g(n))→ g(n) = O(f (n))

f (n) = o(g(n))→ g(n) = ω(f (n))

f (n) = ω(g(n))→ g(n) = o(f (n))

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 25 / 79

Asymptotic Notation
A few practical rules

Multiplying by a constant does not affect:
Θ(c × f (n)) = Θ(f (n))
99× n2 = Θ(n2)

On a polynomial of the form axn
x + ax−1nx−1 + . . .+ a2n

2 + a1n + a0
we can focus on the term with the largest exponent:
3n3 − 5n2 + 100 = Θ(n3)
6n4 − 202 = Θ(n4)
0.8n + 224 = Θ(n)

More than that, on a sum we can focus on the dominant term:
2n + 6n3 = Θ(2n)
n!− 3n2 = Θ(n!)
n log n + 3n2 = Θ(n2)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 26 / 79

Asymptotic Notation
Dominance

When is a function better than another?

If we want to minimize time, ”smaller” functions are better

A function dominates another if as n grows it keeps getting larger

Mathematically: f (n)� g(n) if limn→∞ g(n)/f (n) = 0

Dominance Relations

n!� 2n � n3 � n2 � n log n� n� log n� 1

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 27 / 79

Asymptotic Growth
A practical view

If an operation takes 10−9 seconds...
log n n n log n n2 n3 2n n!

10 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s

20 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 77 years
30 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 1.07s
40 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 18.3 min
50 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 13 days
100 < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s 1013years
103

< 0.01s < 0.01s < 0.01s < 0.01s 1s
104

< 0.01s < 0.01s < 0.01s 0.1s 16.7 min
105

< 0.01s < 0.01s < 0.01s 10s 11 days
106

< 0.01s < 0.01s 0.02s 16.7 min 31 years
107

< 0.01s 0.01s 0.23s 1.16 days
108

< 0.01s 0.1s 2.66s 115 days
109

< 0.01s 1s 29.9s 31 years

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 28 / 79

Asymptotic Notation
Common Functions

Function Name Examples

1 constant summing two numbers
log n logarithmic binary search, inserting in a heap
n linear 1 loop to find maximum value

n log n linearithmic sorting (ex: mergesort, heapsort)
n2 quadratic 2 loops (ex: verifying, bubblesort)
n3 cubic 3 loops (ex: Floyd-Warshall)
2n exponential exhaustive search (ex: subsets)
n! factorial all permutations

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 29 / 79

Asymptotic Growth
Drawing functions

An useful program for drawing functions is gnuplot.

(comparing 2n3 with 100n2 for 1 ≤ n ≤ 100)
gnuplot> plot [1:70] 2*x**3, 100*x**2

gnuplot> set logscale xy 10

gnuplot> plot [1:10000] 2*x**3, 100*x**2

(which grows faster:
√
n or log2 n?)

gnuplot> plot [1:1000000] sqrt(x), log(x)/log(2)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 30 / 79

Asymptotic Analysis
A few more examples

A program has two pieces of code A and B, executed one after the
other, with A running in Θ(n log n) and B in Θ(n2).
The program runs in Θ(n2), because n2 � n log n

A program calls n times a function Θ(log n), and then it calls again n
times another function Θ(log n)
The program runs in Θ(n log n)

A program has 5 loops, all called sequentially, each one of them
running in Θ(n)
The program runs in Θ(n)

A program P1 has execution time proportional to 100× n log n.
Another program P2 runs in 2× n2.
Which one is more efficient?
P1 is more efficient because n2 � n log n. However, for a small n, P2

is quicker and it might make sense to have a program that calls P1 or
P2 depending on n.

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 31 / 79

slides by Pedro Ribeiro, exercises 2
pages 1-2

Algorithms 2024/25 @ FCUP Asymptotic Notation 16 / 24

Algorithms (CC4010) - 2018/2019 DCC/FCUP

Exercises #2

Asymptotic Analysis

Theoretical Background

Remember the asymptotic notation:

• f(n) = O(g(n)) if there exist positive constants n0 and c such that f(n) ≤ cg(n) for all n ≥ n0.

• f(n) = Ω(g(n)) if there exist positive constants n0 and c such that f(n) ≥ cg(n) for all n ≥ n0.

• f(n) = Θ(g(n)) if there exist positive constants n0, c1 and c2 such that c1g(n) ≤ f(n) ≤ c2g(n) for all
n ≥ n0.

• f(n) = o(g(n)) if for any positive constant c there exists n0 such that f(n) < cg(n) for all n ≥ n0.

• f(n) = ω(g(n)) if for any positive constant c there exists n0 such that f(n) > cg(n) for all n ≥ n0.

Asymptotic Notation

1. Is 2n+1 = O(2n)? Is 22n = O(2n). Justify your answer with brief proofs.

2. For each pair of functions f(n) and g(n), indicate whether f(n) is O, o,Ω, ω, or Θ of g(n). Your answer
should be in the form of a ”yes” or ”no” for each cell of the table.

f(n) g(n) O o Ω ω Θ

(a) 2n3 − 10n2 25n2 + 37n

(b) 56 log2 30

(c) log3n log2 n

(d) n3 3n

(e) n! 2n

(f) n! nn

(g) n log2 n + n2 n2

(h)
√
n log2 n

(i) log3(log3 n) log3 n

(j) log2 n log2 n
2

1

3. For each of the following conjectures, indicate if they are true or false, explaining why.

You can assume that functions f(n) and g(n) are asymptotically positive, i.e., they are positive from
some point on (∃n0 : f(n) > 0 for all n ≥ n0)

(a) f(n) = O(g(n)) implies that g(n) = O(f(n))

(b) f(n) = O(g(n)) implies that g(n) = Ω(f(n))

(c) f(n) + g(n) = Θ(min(f(n), g(n)))

(d) f(n) + g(n) = Θ(max(f(n), g(n)))

(e) (n + c)k = Θ(nk), where c and k are positive integer constants

(f) f(n) + o(f(n)) = Θ(f(n))

(g) n2 = Θ(16log4 n)

Growth Ratio

4. Imagine a program A running with time complexity Θ(f(n)), taking t seconds for an input of size
k. What would your estimation be for the execution time for an input of size 2k for the following
functions: n, n2 , n3, 2n, log2 n. Is this growth ratio constant for any k or is it changing?

5. Consider two programs implementing algorithms A and B, both trying to solve the same problem for
an input of size n. They measured the execution times for test cases of different sizes and got the
following table:

Algorithm n = 100 n = 200 n = 300 n = 400 n = 500
A 0.003s 0.024s 0.081s 0.192s 0.375s
B 0.040s 0.160s 0.360s 0.640s 1.000s

(a) Which program is more efficient? Why?

(b) Could you produce a program that uses both algorithms in order to produce an algorithm C that
would be at least as good as A and B for any test case?

2

Analysis of recursive functions

Binary search

To analyse the complexity of a recursive function, we typically define the time T using
recurrence relations.

int bsearch(int x, int v[], int N){
// pre: v is sorted
int i;
if (N<=0) i = -1;
else {

m = N/2;
if (v[m]==x) i = m;
else if (v[m] > x)

i = bsearch(x, v, m);
else {

i = bsearch(x, v+m+1, N-m-1);
if (i!=-1) i = i+m+1

}
return i ;

}

Counting the number of comparisons with
array elements:

T (N) =
{

0 if N = 0
T (N/2) + 2 if N > 0

Algorithms 2024/25 @ FCUP Analysis of recursive functions 17 / 24

Binary search

To analyse the complexity of a recursive function, we typically define the time T using
recurrence relations.

int bsearch(int x, int v[], int N){
// pre: v is sorted
int i;
if (N<=0) i = -1;
else {

m = N/2;
if (v[m]==x) i = m;
else if (v[m] > x)

i = bsearch(x, v, m);
else {

i = bsearch(x, v+m+1, N-m-1);
if (i!=-1) i = i+m+1

}
return i ;

}

(T(N) = T(N/2)+2 if N>0)

T (0) = 0
T (1) = T (20) = 2
T (2) = T (21) = 2 + T (2/2) = 2 + 2 = 4
T (4) = T (22) = 2 + T (4/2) = 2 + 2 + 2 = 6

· · ·
T (2i) = 2 + 2 + · · · + 2︸ ︷︷ ︸

i-times

+2 = 2i + 2

Algorithms 2024/25 @ FCUP Analysis of recursive functions 17 / 24

Binary search

To analyse the complexity of a recursive function, we typically define the time T using
recurrence relations.

int bsearch(int x, int v[], int N){
// pre: v is sorted
int i;
if (N<=0) i = -1;
else {

m = N/2;
if (v[m]==x) i = m;
else if (v[m] > x)

i = bsearch(x, v, m);
else {

i = bsearch(x, v+m+1, N-m-1);
if (i!=-1) i = i+m+1

}
return i ;

}

(T(N) = T(N/2)+2 if N>0)

T (0) = 0
T (1) = T (20) = 2
T (2) = T (21) = 2 + T (2/2) = 2 + 2 = 4
T (4) = T (22) = 2 + T (4/2) = 2 + 2 + 2 = 6

· · ·
T (2i) = 2 + 2 + · · · + 2︸ ︷︷ ︸

i-times

+2 = 2i + 2

T (N) = T (2log2(N))
= 2 ∗ log2(N) + 2 (= Θ(log(N)))

Algorithms 2024/25 @ FCUP Analysis of recursive functions 17 / 24

slides by Pedro Ribeiro, slides 2
pages 38-60

Algorithms 2024/25 @ FCUP Analysis of recursive functions 18 / 24

Divide and Conquer

We are often interested in algorithms that are expressed in a recursive way

Many of these algorithms follow the divide and conquer strategy:

Divide and Conquer

Divide the problem in a set of subproblems which are smaller instances of
the same problem

Conquer the subproblems solving them recursively. If the problem is small
enough, solve it directly.

Combine the solutions of the smaller subproblems on a solution for the
original problem

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 38 / 79

Divide and Conquer
MergeSort

We now describe the MergeSort algorithm for sorting an array of size n

MergeSort

Divide: partition the initial array in two halves

Conquer: recursively sort each half. If we only have one number, it is
sorted.

Combine: merge the two sorted halves in a final sorted array

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 39 / 79

Divide and Conquer
MergeSort

Divide:

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 40 / 79

Divide and Conquer
MergeSort

Conquer:

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 41 / 79

Divide and Conquer
MergeSort

What is the execution time of this algorithm?

D(n) - Time to partition an array of size n in two halves

M(n) - Time to merge two sorted arrays of size n

T(n) - Time for a MergeSort on an array of size n

T (n) =

{
Θ(1) if n = 1
D(n) + 2T (n/2) + M(n) if n > 1

In practice, we are ignoring certain details, but it suffices
(ex: when n is odd, the size of subproblem is not exactly n/2)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 42 / 79

Divide and Conquer
MergeSort

D(n) - Time to partition an array of size n in two halves

We can do it in constant time! Θ(1)

mergesort(a,b): (sort from position a to b)

In the beginning, call mergesort(0,n-1)

Let m = b(a + b)/2c (middle position)
Call mergesort(a,m) and mergesort(m+1,b)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 43 / 79

Divide and Conquer
MergeSort

M(n) - Time to merge two sorted arrays of size n

We can do it in linear time! Θ(n) (2n comparisons)
Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 44 / 79

Divide and Conquer
MergeSort

Back to the mergesort recurrence:

D(n) - Time to partition an array of size n in two halves

M(n) - Time to merge two sorted arrays of size n

T(n) - Time for a MergeSort on an array of size n

T (n) =

{
Θ(1) if n = 1
D(n) + 2T (n/2) + M(n) if n > 1

becomes

T (n) =

{
Θ(1) if n = 1
2T (n/2) + Θ(n) if n > 1

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 45 / 79

Recurrences
Technicalities

For sufficiently small inputs, an algorithm generally takes constant time.
This means that for a small n, we have T (n) = Θ(1)

For convenience, we can can generally omit the boundary condition of
the recurrence.

Examples:

Mergesort: T (n) = 2T (n/2) + Θ(n)

Binary Search: T (n) = T (n/2) + Θ(1)

Finding Maximum with tail recursion: T (n) = T (n − 1) + Θ(1)

How to solve recurrences like this?

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 46 / 79

Recurrences
Solving

We are going to talk about 4 methods:

Unrolling: unroll the recurrence to obtain an expression (ex:
summation) you can work with

Substitution: guess the answer and prove by induction

Recursion Tree: draw a tree representing the recursion and sum all
the work done in the nodes

Master Theorem: If the recurrence is of the form aT(n/b) + cnk,
the answer follows a certain pattern

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 47 / 79

Solving Recurrences
Unrolling Method

Some recurrences can be solved by unrolling them to get a summation:

T (n) = T (n − 1) + Θ(n) = Θ(n) + Θ(n − 1) + Θ(n − 2) + . . .+ Θ(1)

T (n) = T (n − 1) + cn = cn + c(n − 1) + c(n − 2) + . . .+ c

There are n terms and each one is at most cn, so the summation is at
most cn2.

Similarly, since the first n/2 terms are each at least cn/2, this summation
is at least (n/2)(cn/2) = cn2/4.

Given this, the recurrence is Θ(n2).

We could have also used arithmetic progressions:
T (n) = c[n + (n − 1) + . . .+ c] = c (n+c)n

2 = cn2 + c2n/2

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 48 / 79

Recurrences
Substitution method

Another possible method is to make a guess and then prove the guess
correctness using induction

”Strong” vs ”Weak” induction
I With weak induction we assume it is valid for n and then we prove

n + 1
I With strong induction we assume it is valid for all n0 < n and we

prove it for n.

There are two ”main” ways to use the substitution method:
I We have an exact guess, with no ”unknowns” (ex: 3n2 − n)
I We only have an idea of the class it belongs to (ex: cn2)

How to prove that some f (n) is Θ(g(n))?
I If we have an exact formula, just use it
I Else, it may be ”easier” to separately prove O and Ω

F Ex: to prove O we can show it is less than c.g(n)
F Ex: to prove Ω we can show it is more than c.g(n)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 49 / 79

Recurrences
Substitution method

”Prove that T(n) = T(n− 1) + n is Θ(n2)”

Can we have an exact guess?

Let’s assume T (1) = 1

T (n) = T (n − 1) + n
= T (n − 2) + (n − 1) + n
= T (n − 3) + (n − 2) + (n − 1) + n
= 1 + 2 + 3 + . . .+ (n − 1) + n

= (n+1)n
2 (An arithmetic progression)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 50 / 79

Recurrences
Substitution method

”Prove that T(n) = T(n− 1) + n is Θ(n2)”

Our (exact) guess is (n+1)n
2

Now, let’s try to prove by substituting.

Assuming it is true for n − 1:

T (n) = T (n − 1) + n

= n(n−1)
2 + n

= n2−n
2 + n

= n2−n+2n
2

= n2+n
2

= (n+1)n
2 (An we have proved our guess!)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 51 / 79

Recurrences
Substitution method

”Prove that T(n) = T(n/2) + 1 is Θ(log2 n)”
And if we don’t have an exact guess?

Let’s try to prove that T(n) = O(log2 n)

We basically need to prove that T (n) ≤ c log2 n, with n ≥ n0, for a correct
choice of c and n0.

Let’s assume T (1) = 0 and T (2) = 1. For these base cases:

T (1) ≤ c log2 1 for any c, because log2 1 = 0

T (2) ≤ c log2 2 is true as long as c ≥ 1.

Now, assuming it is true for all n′ < n:

T (n) ≤ c log2(n/2) + 1
= c(log2 n − log2 2) + 1
= c log2 n − c + 1
≤ c log2 n, as long as c ≥ 1 (We proved T(n) = O(log2 n))

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 52 / 79

Recurrences
Substitution method

”Prove that T(n) = T(n/2) + 1 is Θ(log2 n)”
Let’s try to prove that T(n) = Ω(log2 n)

We basically need to prove that T (n) ≥ c log2 n, with n ≥ n0, for a correct
choice of c and n0.

Let’s assume T (1) = 0 and T (2) = 1. For these base cases:

T (1) ≥ c log2 1 for any c, because log2 1 = 0

T (2) ≥ c log2 2 is true as long as c ≤ 1.

Now, assuming it is true for all n′ < n:

T (n) ≥ c log2(n/2) + 1
= c(log2 n − log2 2) + 1
= c log2 n − c + 1
≥ c log2 n, as long as c ≤ 1 (We proved T(n) = Ω(log2 n))

T (n) = O(log2 n)) and T (n) = Ω(log2 n)→ T(n) = Θ(log2 n))
Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 53 / 79

Solving Recurrences
Substitution Method

If the guess is wrong, often we will gain clues for a better guess.

Recurrence to solve: T (n) = 4T (n/4) + n

Guess #1: T (n) ≤ cn (which would mean T (n) = O(n))

Attempt to prove Guess #1:
If T (1) = c , then the base case is true. For the rest of the induction,
assuming it is true for n′ < n, we can substitute using n′ = n/4:

T (n) ≤ 4(cn/4) + n
= cn + n
= (c + 1)n but (c + 1)n is never ≤ cn for a positive c

(the guess is wrong!)

We guess that we night need an higher function than simply O(n)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 54 / 79

Solving Recurrences
Substitution Method

Recurrence to solve: T (n) = 4T (n/4) + n

Guess #2: T (n) ≤ n log4 n
(I’m proving a more tight bound than simply cn log4 n)

Attempt to prove Guess #2:
If T (1) = 1, then the base case is true. For the rest of the induction,
assuming it is true for n′ < n, we can substitute using n′ = n/4:

T (n) ≤ 4[(n/4) log4(n/4)] + n
= n log4(n/4) + n
= n log4(n)− n + n
= n log4(n) [correct guess! In fact, T (n) = Θ(n log4 n)]

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 55 / 79

Solving Recurrences
Substitution Method - Subtleties

Sometimes you might correctly guess an asymptotic bound on the solution
of a recurrence, but somehow the math fails to work out in the induction.

The problem frequently turns out to be that the inductive assumption is
not strong enough to prove the detailed bound. If you revise the guess
by subtracting a lower-order term when you hit such a snag, the math
often goes through.

Let’s observe an example of this:
Recurrence to solve: T (n) = 4T (n/2) + n

As you will see later, T (n) = Θ(n2)

Let’s try to prove that directly.

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 56 / 79

Solving Recurrences
Substitution Method - Subtleties

Recurrence to solve: T (n) = 4T (n/2) + n

Guess #1: T (n) ≤ cn2

Attempt to prove Guess #1:
If T (1) = 1, then the base case is true as long as c ≤ 1.

Now, assuming it is true for n′ < n

T (n) ≤ 4[c(n/2)2] + n
= cn2 + n [which is not ≤ cn2 for any positive n]

Although the bound is correct, the math does not work out...

We need a tighter bound to form a stronger induction hypothesis.

Let’s subtract a lower order-term and try T (n) ≤ c1n
2 − c2n

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 57 / 79

Solving Recurrences
Substitution Method - Subtleties

Recurrence to solve: T (n) = 4T (n/2) + n

Guess #2: T (n) ≤ c1n
2 − c2n

Attempt to prove Guess #2:
If T (1) = 1, then the base case is true as long as c1 − c2 ≤ 1

Now, assuming it is true for n′ < n

T (n) ≤ 4[c1(n/2)2 − c2(n/2)] + n
= c1n

2 − 2c2n + n
= c1n

2 − c2n [correct guess!]

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 58 / 79

Solving Recurrences
Recursion Tree Method

Another method is to draw a recursion tree and analyse it, by summing
all the work in the tree nodes.

This method could be also used to get a good guess which we could then
prove by induction.

Let us try it out with MergeSort: T (n) = 2(n/2) + n

(for a cleaner explanation we will assume n = 2k ,
but the results holds for any n)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 59 / 79

Solving Recurrences
Recursion Tree Method

Summing everything we get that MergeSort is Θ(n log2 n)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 60 / 79

Exercises

Ex. 3.9: Solve using recursion trees (assume T (0) is a constant)

1. T (n) = k + T (n − 1) where k is a constant

2. T (n) = k + T (n/2) where k is a constant

3. T (n) = k + 2 ∗ T (n/2) where k is a constant

4. T (n) = n + T (n − 1)

5. T (n) = n + T (n/2)

6. T (n) = n + 2 ∗ T (n/2)

Algorithms 2024/25 @ FCUP Analysis of recursive functions 19 / 24

Exercises

Ex. 3.10: Write recurrences for maxSumR (wrt array accesses) & Hanoi (wrt printf)

Ex. 3.11: Draw a recurrence tree for Hanoi and use it to derive its asymptotic
complexity

int maxSumR (int v[], int N) {
int r=0, m1 , m2, i;
if (N>0) {

m1 = m2 = v[0];
for (i=1; i<N; i++) {

m2 = m2+v[i];
if (m2 >m1) m1=m2;

}
m2 = maxSumR (v+1,N-1);
if (m1 >m2) r = m1; else r = m2;

}
return r; }

void Hanoi(int nDiscs , int l,
int r, int m) {

if (nDiscs > 0) {
Hanoi(nDiscs -1, l, m, r);
printf("move␣disk:␣%d␣-->␣

%d\n", l, r);
Hanoi(nDiscs -1, m, r, l);

}
}

Algorithms 2024/25 @ FCUP Analysis of recursive functions 20 / 24

Exercises

int heightBT(BTree t){
int r=0;
if (t!=NULL)

r = 1 + max (heightBT(t->left),
heightBT(t->right));

return r;
}

Ex. 3.12: Recall binary trees; this
function calculates the maximum
height of a binary tree. Identify the
best and worst cases for this
function, and describe a recurrence
for each one.

Algorithms 2024/25 @ FCUP Analysis of recursive functions 21 / 24

slides by Pedro Ribeiro, slides 2
pages 61-69

Algorithms 2024/25 @ FCUP Analysis of recursive functions 22 / 24

Solving Recurrences
Master Theorem

We can use the master theorem for recurrences of the following form:

T(n) = aT(n/b) + cnk

This is well suited for divide and conquer recurrences and corresponds to
an algorithm that divides the problem into a pieces of size n/b and takes
cnk time for partitioning+combining.

In the mergesort case, a = 2, b = 2, k = 1.

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 61 / 79

Master Theorem
Intuition behind it

aT(n/b) + nk (I assume c = 1 for a cleaner explanation)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 62 / 79

Master Theorem
Intuition behind it

Root (first level): nk

Depth i (intermediate): ai (n/bi)k = ai/biknk = (a/bk)ink

Leafs (last level): alogb n = nlogb a

So the weight of depth i is: (a/bk)ink

(1) a < bk implies that a/bk is lower than 1 (weight is shrinking)
(2) a = bk implies that a/bk is equal to 1 (weight is constant)
(3) a > bk implies that a/bk is higher than 1 (weight is growing)

(1) The time is dominated by the top level
(2) The time is (uniformly) distributed along the recursion tree
(3) The time is dominated by the last level

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 63 / 79

Master Theorem

Master Theorem - A practical version

A recurrence aT(n/b) + cnk (a ≥ 1, b > 1, c and k are constants) solves to:

(1) T (n) = Θ(nk) if a < bk

(2) T (n) = Θ(nk log n) if a = bk

(3) T (n) = Θ(nlogb a) if a > bk

If you think on the recursion tree, intuitively, these 3 cases correspond to:

(1) The time is dominated by the top level

(2) The time is (uniformly) distributed along the recursion tree

(3) The time is dominated by the last level

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 64 / 79

Master Theorem

Master Theorem - A practical version

A recurrence aT(n/b) + cnk (a ≥ 1, b > 1, c and k are constants) solves to:

(1) T (n) = Θ(nk) if a < bk

(2) T (n) = Θ(nk log n) if a = bk

(3) T (n) = Θ(nlogb a) if a > bk

Example of Case (1):

T (n) = 2T (n/2) + n2

a = 2, b = 2, k = 2, a < bk since 2 < 4.

The recurrence solves to Θ(n2)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 65 / 79

Master Theorem

Master Theorem - A practical version

A recurrence aT(n/b) + cnk (a ≥ 1, b > 1, c and k are constants) solves to:

(1) T (n) = Θ(nk) if a < bk

(2) T (n) = Θ(nk log n) if a = bk

(3) T (n) = Θ(nlogb a) if a > bk

Example of Case (2):

T (n) = 2T (n/2) + n (ex: mergesort)

a = 2, b = 2, k = 1, a = bk since 2 = 2.

The recurrence solves to Θ(n log n) (as we already knew).

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 66 / 79

Master Theorem

Master Theorem - A practical version

A recurrence aT(n/b) + cnk (a ≥ 1, b > 1, c and k are constants) solves to:

(1) T (n) = Θ(nk) if a < bk

(2) T (n) = Θ(nk log n) if a = bk

(3) T (n) = Θ(nlogb a) if a > bk

Example of Case (3):

T (n) = 2T (n/2) + 1

a = 2, b = 2, k = 0, a > bk since 2 > 1.

The recurrence solves to Θ(n)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 67 / 79

Master Theorem
Revisiting the examples

Examples:

(1) T (n) = 2T (n/2) + n2 = Θ(n2)
n2 + n2/2 + n2/4 + . . .+ n ← (n2 dominates, i.e., the root)

(2) T (n) = 2T (n/2) + n = Θ(n log n)
n + n + . . .+ n ← (distributed among all levels)

(3) T (n) = 2T (n/2) + 1 = Θ(n)
1 + 2 + 4 + . . .+ n ← (n dominates, i.e., the leaf)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 68 / 79

Master Theorem

For the sake of completeness, here is the master theorem version presented
in the book ”Introduction to Algorithms”.

Master Theorem

A more general version A recurrence aT(n/b) + f(n) (a ≥ 1, b > 1 are
constants) solves to:

(1) If f (n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a)

(2) If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

(3) If f (n) = Ω(nlogb a+ε) for some constant ε > 0, and if af (n/b) ≤ cf (n)
for some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

(cases 1 and 3 are inverted in relation to the practical version I’ve shown)

Pedro Ribeiro (DCC/FCUP) Asymptotic Analysis 2018/2019 69 / 79

slides by Pedro Ribeiro, exercises 3
pages 1-2

Algorithms 2024/25 @ FCUP Analysis of recursive functions 23 / 24

Algorithms (CC4010) - 2018/2019 DCC/FCUP

Exercises #3

Solving Recurrences

Theoretical Background

4 methods for solving recurrences:

• Unrolling: unroll the recurrence to obtain an expression (ex: summation) you can work with

• Substitution: guess the answer and prove by induction

• Recursion Tree: draw a tree representing the recursion and sum all the work done in the nodes

• Master Theorem: If the recurrence is of the form aT(n/b) + cnk (this is one version of the theorem):

(1) T (n) = Θ(nk) if a < bk

(2) T (n) = Θ(nk log n) if a = bk

(3) T (n) = Θ(nlogb a) if a > bk

For the following exercises, assume that T (n) takes constant time for sufficiently small n.

1. Solve the following recurrences by unrolling. State the answer using Θ notation.

(a) T (n) = T (n− 2) + 1

(b) T (n) = T (n− 1) + n2

2. Show that the following conjectures are true by using the substitution method.

(a) T (n) = T (n− 1) + 2 is Θ(n)

(b) T (n) = 2T (n/2) + n is Θ(n log n)

3. Draw a recursion tree for the following recurrences and use it to obtain asymptotic bounds as tight as
possible.

(a) T (n) = 3T (n/2) + n

(b) T (n) = T (n/2) + n2

4. Solve the following recurrences using the master method:

(a) T (n) = 2T (n/4) + 1

(b) T (n) = 2T (n/4) +
√
n

(c) T (n) = 2T (n/4) + n

(d) T (n) = 2T (n/4) + n2

1

5. Consider the recurrence T (n) = 8T (n/2) + n2

(a) Use the substitution method to try to prove that T (n) = O(n2). The proof should fail. Can you
understand why?

(b) Use the master method to find the a tight asymptotic bound. Try to prove that bound directly.
Does the math work?

(c) Use a stronger induction hypothesis (by subtracting a lower order term) and make a correct proof
of that tighter bound.

6. Give asymptotic upper and lower bounds (as tight as possible) for the following recurrences. You can
use any method you want.

(a) T (n) = 7T (n/3) + n2

(b) T (n) = 7T (n/2) + n2

(c) T (n) = 2T (n/4) + n2

(d) T (n) = T (n− 2) + n3

(e) T (n) = T (n/2) + T (n/4) + T (n/8) + n

(f) T (n) = T (n− 1) + 1
n

(g) T (n) = 4T (n/3) + n log2 n

2

What’s next?

What’s next?

So far:
• Checking correctness

of algorithms
• Measuring

best/worst
performance of
algorithms

• Analysing recursive
functions

Next:
• Analysis of the average time execution
• Analysis of sequences of operations (amortised analysis)
• Lower bounds
• Data structures

• Sets and Sequences
• Buffers (Stacks, Queues, Priority queues)
• Dictionaries (Hashtables, Search trees)

Algorithms 2024/25 @ FCUP What’s next? 24 / 24

	Motivation
	Counting operations
	Asymptotic Notation
	Analysis of recursive functions
	What's next?

