2. Algorithm Correctness

José Proenca Pedro Ribeiro
Algorithms (CC4010) 2024 /2025

CISTER - U.Porto, Porto, Portugal https://fm-dcc.github.io/alg2425

[MPORTO oy g s e

E FACULDADE DE CIENCIAS Computing Systems
C UNIVERSIDADE DO PORTO

https://fm-dcc.github.io/alg2425

Motivation

Algorithms 2024 /25 @ FCUP

slides by Pedro Ribeiro, slides 1
pages 1-5

Motivation

Correctness and Loop Invariants J

Pedro Ribeiro

DCC/FCUP

2018/2019

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 1/23

On Algorithms

What are algorithms? A set of instructions to solve a problem.

@ The problem is the motivation for the algorithm
@ The instructions need to be executable

o Typically, there are different algorithms for the same problem
[how to choose?]

@ Representation: description of the instructions that is
understandable for the intended audience

Py forounite dish
Ingredients

1 red onion
2 red peppers

P
e 2 . R
= e -

= o

\ (
:

e &)
Method p i i ;
JIGE th orion. red peppers and bacon nto smal peces v & — (.—
. Heat some olive ol n a pan and fry the onion,red b
< peppers and bacon.

\i

= Add Biegano/garic) tomatoss and Water and cook for &
= 20 minutes.
5 Serve the pasta with the sauce, and erioy! Pe ngu|n J} ;

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 2/23

On Algorithms

” Computer” Science version

@ An algorithm is a method for solving a (computational) problem

@ Algorithms are the ideas behind the programs and are independent
from the programming language, the machine, ...

@ A problem is characterized by the description of its input and output

A classical example:

Sorting Problem

Input: a sequence of (a1, ap,...,a,) of n numbers
Output a permutatlon of the numbers (31,32, ..,a,) such that
31 < 32 <...< a

Example instance for the sorting problem

Input: 637924
Output: 234679

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 3/23

On Algorithms

What do we aim for?
@ What properties do we want on an algorithm?

Correction

It has to solve correctly all instances of the problem

Efficiency

The performance (time and memory) has to be adequate

@ This course is about designing correct and efficient algorithms and
how to prove they meet the specifications

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 4/23

About correction

@ In this lecture we will (mostly) worry about correction
» Given an algorithm, it is not often obvious or trivial to know if it is
correct, and even less so to prove this.

» By learning how to reason about correctness, we also gain insight into
what really makes an algorithm work

ARE YoU (OMING To BED?
) T CANT THIS
15 IMPORTANT,
WHAT? /
_/ SOMEONE 15 WRONG
ONTHE INTERNET.
/
ML

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 5/23

Specification

Ex. 2.1: What do these functions do?

int fa (int x, int y){

// pre: True

// pos: (m == x || m == y) &&

// (m >= x & m >= y)
return m;

int fc (int x, int y){
// pre: x > 0 && y > O

// pos: r % x == 0 & r % y == 0

return r;

}

i

3

nt fb (int x, int y){
// pre: x >= 0 && y >= 0

// pos: x % r == 0 && y % r ==
return r;

int fd (int al[l, int N){
// pre: N>0

// pos:

// (forall_{0<=i<N} x<=al[il) &&
// (exists_{0<=i<N} x==al[il)
return x;

Specification

3/15

When is an algorithm correct?

Ex. 2.2: Formulate pre- and post-conditions:

int prod (int x, int y) — product of two integers

int gcd (int x, int y) — greatest common divisor of 2 positive integers

int sum (int v[], int N) — sum of elements in an array

int maxPOrd (int v[], int N) — length of the longest sorted prefix of an array
int isSorted (int v[], int N) — tests if an array is sorted (growing)

Algorithms 2024 /25 @ FCUP Specification

Hoare triples FC

A triple {P}S{Q} is a valid Hoare triple when
if [P holds] and [S is executed] then [Q holds]

Ex. 2.3: Find initial states that show these are not valid (and fix pre-cond.)
{True} r=x+y; {r>x}
{True} x=x+y; y=x-y; x=x-y; {x==y}

{True} x=x+y; y=x-y; x=x-y; {x#y}
{True} if(x>y) r=x-y; else r=y-x; {r>0}

gl = W =

{True} while (x>0) {y=y+1; x=x-1;} {y>x}

Finding weakest preconditions online: https://cister-labs.github.io/whilelang-scala

Algorithms 2024 /25 @ FCUP Specification 5/15

https://cister-labs.github.io/whilelang-scala/?%7Btrue%7D%20x=x+y;%20y=x-y;%20x=x-y;%20%7Bx=y%7D

Partial correctness

P = Q@ after doing S

{P} S {Q}
P = Q[x\E] P=1 {Inc} S{l} (IN—c)=Q
R S IR) [wiLe] (P} while c S {Q}
1. Initialisation: P = |/ (P is the precondition right before the cycle)

Before the cycle the invariant holds.
2. Maintenance: {/Ac} S {/} (or I A c = I', where I' is the invariant after S)

Assuming the invariant holds before an iteration; it must be valid after it.

3. Usefulness (Termination): (I A —c) = Q (simplify | A ¢ until obtain Q)
After the cycle the post-condition holds.

Algorithms 2024 /25 @ FCUP

slides by Pedro Ribeiro, slides 1
pages 6-10

Partial correctness

Loops

@ We will tackle one of the most fundamental (and most used)
algorithmic patterns: a loop (e.g. for or while instructions)

Example loop: summing integers from 1 to n
sum =10
i=1
while (i < n) {
sum = sum + i
i=i+1

}

@ We will talk about how to prove that a loop is correct

@ We will show how this is also useful for designing new algorithms

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019

6/23

Loop Invariants

Definition of Loop Invariant

A condition that is necessarily true immediately before (and immediately
after) each iteration of a loop

Note that this says nothing about its truth or falsity part way through an
iteration.

Instructions are for computers, invariants are for humans J

@ The loop program statements are " operational”, they are " how to
do” instructions

@ Invariants are " assertional”, capturing ”what it means”
descriptions

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 7/23

Anatomy of a loop

Consider a simple loop: while (B) { S }
@ Q: precondition (assumptions at the beginning)
@ B: the stop condition (defining when the loop end)
@ S: the body of the loop (a set of statements)
@ R: postcondition (what we want to be true at the end)

Example loop: summing integers from 1 to n

sum =0

i=1

while (i < n) {
sum = sum + |
i=i+1

}
@ Q:sum=0andi=1
eB:i<N
@ S: sum = sum—+ i followed by i =i+1

n

@ Risum= 3"

i=1
Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 8/23

The invariant?

@ P: an invariant (condition that holds at the start of each iteration)

start

A A

‘1— P (the invariant) holds here (every time)

S Ttrue \fa!se T o <top
P&B P & not(B) R (postcondition)
holds here holds here is to hold here

@ To be useful, the invariant P that we seek should be such that:
P A not(B) - R
i—1
» For the example sum loop, it could be: sum =" i
i=1

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019

4— Q (the precondition) holds here (assumption)

9/23

How to show that an invariant is really one?

start

l4— Q (the precondition) holds here (assumption)

vd— P (the invariant) holds here (every time)

B\fafse T T » stop

P&B P & not(B) R (postcondition)
holds here holds here is to hold here

@ First, show that @ — P
(truth precondition Q guarantees truth of invariant P)

0
» For the example sum loop: sum=0 which is = >/
i=1
@ If P A B, then after executing S, then P holds after executing S
(the statements S of the loop guarantee that P is respected)
i—1 i
» For the example sum loop: >~ +i=>_
i=1 i-1

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019

10/ 23

How to show that an invariant is really one?

Initialization

The invariant is true
prior to the first
iteration of the loop

P=

in the slide before:
Q=P

Algorithms 2024 /25 @ FCUP

Maintenance

If it is true before an iteration
of the loop, it remains true
before the next iteration

INc=

in the slide before:
P A B = P after executing S

Partial correctness

iC

Usefulness (termination)
When the loop

terminates, the invariant
gives us a useful property
that helps show that the
algorithm is correct

(IN=¢c)=Q

in the slide before:
PA-B=R

int multl (int x, int y){ int mult2 (int x, int y){
// pre: x>=0 // pre: x>=0
int a, b, r; int a, b, r;
a=x; b=y; r=0; a=x; b=y; r=0;
while (a!=0){ while (a!=0) {
r = r+b; if (a%2 == 1) r = r+b;
a = a-1; a=a/2;
i b=b*2;
// pos: r == x *x y // pos: r == x % y
return r; return r;
¥ b

Ex. 2.4: Check if Initialization and Maintenance holds for

F == g% o r>0
b>0 a#x

these formulae
b e —

axb==xxy
axb+r==xxy

Partial correctness 9/15

int multl (int x, int y){
// pre: x>=0
int a, b, r;
a=x; b=y; r=0;
while (a!=0){
r = r+b;
a = a-1;

// pos: r == x % y
return r;

int mult2 (int x,
// pre: x>=0
int a, b, r;
a=x; b=y; r=0;
while (a!=0) {

if (a%2 == 1) r
a=a/2;
b=b*2;

// pos: r == x

return r;

Ex. 2.5: Find loop invariants to prove partial correctness

Partial correctness

int multl (int x,

// pre: x>=0
int a, b, r;
a=x; b=y; r=0;
while (a>0){

r = r+b;

a = a-1;
¥
// pos: r == x *
return r;

int y){

line x y a b r
4 4 5 4 5 0
6 4 5 4 5 b
7 4 5 3 5 5
6 4 5 3 5 10
7 4 5 2 5 10
6 4 5 2 5 15
7 4 5 1 5 15
6 4 5 1 5 20
7 4 5 0 5 20
10 4 5 0 5 20

Partial correctness

10 /15

= x and y never change

line x y a b r
= 1 grows proportionally
4 4 5 4 5 0 .
1 int multl (int x, int y){ as a shrinks
2 // pre: x>=0 6 4 5 4 5 5
3 int a, b, r; 7 4 5 3 5 5 = guess:
4 a=x; b=y; r=0; / é axb + r = x*xy
5/ while (a>0){ 6 4 5 3 5 10
6 r = r+b; 7 4 5 2 5 10
7 a = a-1;
s 1 6 4 5 2 5 15
9 // pos: r == x x y 7 4 5 1 5 15
N 6 4 5 1 5 20
7 4 5 0 5 20
100 4 5 0 5 20

 AgorthmsoojseFCUP Partial correctness 0 i

= x and y never change

line x y a b r)
= 1 grows proportionally
4 4 5 4 5 0 .
1 int multl (int x, int y){ as a shrinks
2| // pre: x>=0 6 4 5 4 5 5)
3/ int a, b, r; 7 4 5 3 5 5] gueAss.
4 a=x; b=y; r=0; = axb + r = x*xy
5/ while (a>0){ 6 4 5 3 5 10
6 r = r+b; 7 4 5 2 5 10 = Need to show:
7 a = a-1;
sl ¥ 6 4 5 2 5 15 x>=0 = /'
9 // pos: r == X * y 7 4 5 1 5 15 I/\a>0:l/
10 return r;
1|} 6 4 5 1520 I A =(a>0) = r = xxy
7 4 5 0 5 20
100 4 5 0 5 20

Some intuition — mult1(4,5) FC

x and y never change
line x y a b r

r grows proportionally

1/ int multl (int x, int y){ as a shrinks

2 // pre: x>=0 6 4 5 5 b)

3 int a, b, r; 7 4 5 3 5 5 = gueAss.

4 a=3 Bewg =08 | = axb + r = x*xy

5 while (a>0){ 6 4 5 5 10

6 r = r+b; 7 4 5 2 5 10 = Need to show:

7 a = a-1;

o 3 6 4 5 2 5 15 x>=0 = /'

9| // pos: r == x * y 7 4 5 1 5 15 IAa>0 = [

10 return r;

1|} I I'A=(a>0) = r = x*y
7 4 5 5 20

Ww 4 b0 e @ = (Not all works — enrich

invariant!)

Algorithms 2024 /25 @ FCUP Partial correctness 10

int serie(int n){
// pre: n>=0
int r=0, i=1;
// inv: 77
while (i!=n+1) {

r = r+i; i = i+1;
¥
// pos: r == n * (n+l1) / 2;
return r;

int mod(int x,
// pre: x>=0
int r = x;

int y) {
&& y>0

while (y <= r) {

r = r-y;
}
// pos: 0 <=
X == q*y
return r;

r <y && exists_{ql}
+ r

Ex. 2.5: Find loop invariants

Partial correctness

11/ 15

int minInd (int v[], int N) {

// pre: N>0
int i 1, r = 0;
// in:

while (i<N) {
if (v[il < vIr]) © = i;
i=d+1;)
// pos: 0 <= r < N && forall {0 <= k < N} v[r] <= v[k]
return r; }

int minimum (int v[], int N) {
// pre: N>0
int i =1, r = v[0];
// in 77
while (it=N) {
if (v[i] < 1) r = v[il;

i=it1; }
// pos: (forall {0 <= k < N} r <= v[kl) &&
/7 (exists_{0 <= p < N} r == v[pl)
return r;
}
int sum (int v([], int N) {
// pre: N>0
int i =0, r = 0;
/7 im

while (i!=N) {
r =1 + vli]; i=i+1;
}
// pos: r == sum_{0 <= k < N} v[k]
return r;

int sqri (int x) {
// pre: x>=0
int a = x, b =x, r = 0;

// inv: 7?7

while (a!=0) {
if (a%2 != 0) r =1 + b;
a=a/2; b=b*2;

}

W s ® == =0

return r;

¥

int sqr2 (int x){
// pre: x>=0
int r

// in
while (i<x) {

i = di+1; T = T4p; p = p*2;
b3
// pos: r == x"2
return r;

int ssearch (int x, int all, int N){
/7 pre: N>0 &k

1/ forall {0 < k < N-1} al[k-1]<=a[k]
int p = -1, i = 0;
/7 in
while (p -1 &k i < N &g x >= alil) {

it (alil x) p =i

io= i+1;
}
// pos: (p == -1 && forall {0 <= k < N} alk]
11 ((0 <=p <N) && x alpl)
return p;

1= x)

Partial correctness

12 /15

Complete correctness

Given {P} S {Q}

Partial correctness
if [P holds] and [S is executed] then [Q holds]

Complete correctness
if [P holds] and [S is executed] then [Q holds] AND S terminates

 AgorthmsoojseFCUP Complete correctness i

Given {P} S {Q}

Partial correctness
if [P holds] and [S is executed] then [Q holds]

Complete correctness
if [P holds] and [S is executed] then [Q holds] AND S terminates

Enough to show the existence of a loop variant

 AgorithmsoojseFCUP Complete correctness i

Technique that measures the distance between the current state and the final state.

A loop variant V is an integer expression s.t.
= s positive in the beginning of each round (c Al = V >0)

= decreases in every round (c Al = V > V')

r=x;

q=0;

while (y <= r) { = V =r—yisnota good variant
r =r-y;
q = q+1; "

}

 AgorithmsoojseFCUP Complete correctness i

Technique that measures the distance between the current state and the final state.

A loop variant V is an integer expression s.t.
= s positive in the beginning of each round (c Al = V >0)

= decreases in every round (c Al = V > V')

r=X;
q=0;
while (y <= 1) { = V =r—yisnot agood variant
T = Toyg . .
q = q+1; = V=r—y+1isagood variant
}

 AgorithmsoojseFCUP Complete correctness i

Loop variant

Technique that measures the distance between the current state and the final state.

A loop variant V is an integer expression s.t.

= is positive in the beginning of each round (c Al = V > 0)

= decreases in every round (c Al = V > V')

r=Xx;

q=0;

while (y <= r) {
r = r-y;
q = q+l;

}

Algorithms 2024 /25 @ FCUP

= V =r—yisnot agood variant

= V=r—y+1isa good variant

y <r =V >0 at each round
V > V/ after each round

Complete correctness 14 / 15

int sum(int vI[], int N) {
int i = 0, r = 0;
while (i!=N) {
// variant: 777
r =1 + v[il;
i=i+1;
}

return r;

Ex. 2.6: Find variant above

Ex.2.7: Find variants of the loops in previous exercises
(when searching for invariants)

 AgorithmsoojseFCUP Complete correctness

15 /15

	Motivation
	Specification
	Partial correctness
	Complete correctness

