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On Algorithms

What are algorithms? A set of instructions to solve a problem.

The problem is the motivation for the algorithm

The instructions need to be executable

Typically, there are different algorithms for the same problem
[how to choose?]

Representation: description of the instructions that is
understandable for the intended audience
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On Algorithms
”Computer” Science version

An algorithm is a method for solving a (computational) problem

Algorithms are the ideas behind the programs and are independent
from the programming language, the machine, ...

A problem is characterized by the description of its input and output

A classical example:

Sorting Problem

Input: a sequence of 〈a1, a2, . . . , an〉 of n numbers
Output: a permutation of the numbers 〈a′

1, a
′
2, . . . , a

′
n〉 such that

a
′
1 ≤ a

′
2 ≤ . . . ≤ a

′
n

Example instance for the sorting problem

Input: 6 3 7 9 2 4
Output: 2 3 4 6 7 9
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On Algorithms
What do we aim for?

What properties do we want on an algorithm?

Correction

It has to solve correctly all instances of the problem

Efficiency

The performance (time and memory) has to be adequate

This course is about designing correct and efficient algorithms and
how to prove they meet the specifications
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About correction

In this lecture we will (mostly) worry about correction

I Given an algorithm, it is not often obvious or trivial to know if it is
correct, and even less so to prove this.

I By learning how to reason about correctness, we also gain insight into
what really makes an algorithm work
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Specification



When is an algorithm correct?

Ex. 2.1: What do these functions do?

int fa (int x, int y){
// pre: True
...
// pos: (m == x || m == y) &&
// (m >= x && m >= y)
return m;

}

int fb (int x, int y){
// pre: x >= 0 && y >= 0
...
// pos: x % r == 0 && y % r == 0
return r;

}

int fc (int x, int y){
// pre: x > 0 && y > 0
...
// pos: r % x == 0 && r % y == 0
return r;

}

int fd (int a[], int N){
// pre: N >0
...
// pos:
// ( forall_ {0 <=i<N} x <=a[i]) &&
// ( exists_ {0 <=i<N} x==a[i])
return x;

}
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When is an algorithm correct?

Ex. 2.2: Formulate pre- and post-conditions:
int prod (int x, int y) – product of two integers
int gcd (int x, int y) – greatest common divisor of 2 positive integers
int sum (int v[], int N) – sum of elements in an array
int maxPOrd (int v[], int N) – length of the longest sorted prefix of an array
int isSorted (int v[], int N) – tests if an array is sorted (growing)
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Hoare triples

A triple {P}S{Q} is a valid Hoare triple when
if [P holds] and [S is executed ] then [Q holds]

Ex. 2.3: Find initial states that show these are not valid (and fix pre-cond.)

1. {True} r=x+y; {r≥x}

2. {True} x=x+y; y=x-y; x=x-y; {x==y}

3. {True} x=x+y; y=x-y; x=x-y; {x̸=y}

4. {True} if(x>y) r=x-y; else r=y-x; {r>0}

5. {True} while (x>0) {y=y+1; x=x-1;} {y>x}

Finding weakest preconditions online: https://cister-labs.github.io/whilelang-scala
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Partial correctness



Using rules for Hoare triples

P ⇒ Q after doing S
{P} S {Q}

[seq]
P ⇒ Q[x\E ]

{P} x:=E {Q}
[while]

P ⇒ I {I ∧ c} S {I} (I ∧ ¬c) ⇒ Q
{P} while c S {Q}

1. Initialisation: P ⇒ I (P is the precondition right before the cycle)
Before the cycle the invariant holds.

2. Maintenance: {I ∧ c} S {I} (or I ∧ c ⇒ I ′, where I ′ is the invariant after S)
Assuming the invariant holds before an iteration; it must be valid after it.

3. Usefulness (Termination): (I ∧ ¬c) ⇒ Q (simplify I ∧ c until obtain Q)
After the cycle the post-condition holds.
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Loops

We will tackle one of the most fundamental (and most used)
algorithmic patterns: a loop (e.g. for or while instructions)

Example loop: summing integers from 1 to n

sum = 0
i = 1
while (i ≤ n) {

sum = sum + i
i = i + 1

}

We will talk about how to prove that a loop is correct

We will show how this is also useful for designing new algorithms
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Loop Invariants

Definition of Loop Invariant

A condition that is necessarily true immediately before (and immediately
after) each iteration of a loop

Note that this says nothing about its truth or falsity part way through an
iteration.

Instructions are for computers, invariants are for humans

The loop program statements are ”operational”, they are ”how to
do” instructions

Invariants are ”assertional”, capturing ”what it means”
descriptions
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Anatomy of a loop

Consider a simple loop: while (B) { S }
Q: precondition (assumptions at the beginning)
B: the stop condition (defining when the loop end)
S: the body of the loop (a set of statements)
R: postcondition (what we want to be true at the end)

Example loop: summing integers from 1 to n

sum = 0
i = 1
while (i ≤ n) {

sum = sum + i
i = i + 1
}

Q: sum = 0 and i = 1
B: i ≤ N
S: sum = sum + i followed by i = i + 1

R: sum =
n∑

i=1
i
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The invariant?

P: an invariant (condition that holds at the start of each iteration)

To be useful, the invariant P that we seek should be such that:
P ∧ not(B)→ R

I For the example sum loop, it could be: sum =
i−1∑
i=1

i
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How to show that an invariant is really one?

First, show that Q → P
(truth precondition Q guarantees truth of invariant P)

I For the example sum loop: sum=0 which is =
0∑

i=1

i

If P ∧ B, then after executing S , then P holds after executing S
(the statements S of the loop guarantee that P is respected)

I For the example sum loop:
i−1∑
i=1

+i =
i∑

i=1
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How to show that an invariant is really one?

Initialization
The invariant is true
prior to the first
iteration of the loop

P ⇒ I

in the slide before:
Q ⇒ P

Maintenance
If it is true before an iteration
of the loop, it remains true
before the next iteration

I ∧ c ⇒ I ′

in the slide before:
P ∧ B ⇒ P after executing S

Usefulness (termination)
When the loop
terminates, the invariant
gives us a useful property
that helps show that the
algorithm is correct

(I ∧ ¬c) ⇒ Q

in the slide before:
P ∧ ¬B ⇒ R
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Exercises

int mult1 (int x, int y){
// pre: x >=0
int a, b, r;
a=x; b=y; r=0;
while (a!=0){

r = r+b;
a = a -1;

}
// pos: r == x * y
return r;

}

int mult2 (int x, int y){
// pre: x >=0
int a, b, r;
a=x; b=y; r=0;
while (a!=0) {

if (a%2 == 1) r = r+b;
a=a/2;
b=b*2;

// pos: r == x * y
return r;

}

Ex. 2.4: Check if Initialization and Maintenance holds for these formulae
r == a ∗ b
a ≥ 0
b ≥ 0

r ≥ 0
a == x
a ̸= x

b == 0
a ∗ b == x ∗ y
a ∗b + r == x ∗y
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Exercises

int mult1 (int x, int y){
// pre: x >=0
int a, b, r;
a=x; b=y; r=0;
while (a!=0){

r = r+b;
a = a -1;

}
// pos: r == x * y
return r;

}

int mult2 (int x, int y){
// pre: x >=0
int a, b, r;
a=x; b=y; r=0;
while (a!=0) {

if (a%2 == 1) r = r+b;
a=a/2;
b=b*2;

// pos: r == x * y
return r;

}

Ex. 2.5: Find loop invariants to prove partial correctness
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Some intuition – mult1(4,5)

1 int mult1 (int x, int y){
2 // pre: x >=0
3 int a, b, r;
4 a=x; b=y; r=0;
5 while (a >0){
6 r = r+b;
7 a = a -1;
8 }
9 // pos: r == x * y

10 return r;
11 }

line x y a b r

4 4 5 4 5 0

6 4 5 4 5 5
7 4 5 3 5 5

6 4 5 3 5 10
7 4 5 2 5 10

6 4 5 2 5 15
7 4 5 1 5 15

6 4 5 1 5 20
7 4 5 0 5 20

10 4 5 0 5 20

• x and y never change
• r grows proportionally

as a shrinks
• guess:

I △= a*b + r = x*y

• Need to show:
x>=0 ⇒ I ′

I ∧ a>0 ⇒ I ′

I ∧ ¬(a>0) ⇒ r = x*y

• (Not all works – enrich
invariant!)
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More exercises

int serie (int n){
// pre: n >=0
int r=0, i=1;
// inv: ??
while (i!=n+1) {

r = r+i; i = i+1;
}
// pos: r == n * (n+1) / 2;
return r;

}

int mod(int x, int y) {
// pre: x >=0 && y >0
int r = x;
while (y <= r) {

r = r-y;
}
// pos: 0 <= r < y && exists_ {q}

x == q*y + r
return r;

}

Ex. 2.5: Find loop invariants
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Even more exercises (@home)

int minInd (int v[], int N) {
// pre: N >0
int i = 1, r = 0;
// inv: ???
while (i<N) {

if (v[i] < v[r]) r = i;
i = i+1; }

// pos: 0 <= r < N && forall_ {0 <= k < N} v[r] <= v[k]
return r; }

int minimum (int v[], int N) {
// pre: N >0
int i = 1, r = v[0];
// inv: ???
while (i!=N) {

if (v[i] < r) r = v[i];
i=i+1; }

// pos: ( forall_ {0 <= k < N} r <= v[k]) &&
// ( exists_ {0 <= p < N} r == v[p])
return r;

}

int sum (int v[], int N) {
// pre: N >0
int i = 0, r = 0;
// inv: ???
while (i!=N) {

r = r + v[i]; i=i+1;
}
// pos: r == sum_ {0 <= k < N} v[k]
return r;

}

int sqr1 (int x) {
// pre: x >=0
int a = x, b = x, r = 0;
// inv: ??
while (a!=0) {

if (a%2 != 0) r = r + b;
a=a/2; b=b*2;

}
// pos: r == x^2
return r;
}

int sqr2 (int x){
// pre: x >=0
int r = 0, i = 0, p = 1;
// inv: ??
while (i<x) {

i = i+1; r = r+p; p = p+2;
}
// pos: r == x^2
return r;

}

int ssearch (int x, int a[], int N){
// pre: N >0 &&
// forall_ {0 < k < N -1} a[k -1] <=a[k]
int p = -1, i = 0;
// inv: ??
while (p == -1 && i < N && x >= a[i]) {

if (a[i] == x) p = i;
i = i+1;

}
// pos: (p == -1 && forall_ {0 <= k < N} a[k] != x) ||
// ( (0 <= p < N ) && x == a[p])
return p;

}
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Complete correctness



Partial/Complete correctness

Given {P} S {Q}

Partial correctness
if [P holds] and [S is executed ] then [Q holds]

Complete correctness
if [P holds] and [S is executed ] then [Q holds] AND S terminates

Enough to show the existence of a loop variant
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Loop variant

Technique that measures the distance between the current state and the final state.

A loop variant V is an integer expression s.t.
• is positive in the beginning of each round (c ∧ I ⇒ V > 0)
• decreases in every round (c ∧ I ⇒ V > V ′)

r=x;
q=0;
while (y <= r) {

r = r-y;
q = q+1;

}

• V = r − y is not a good variant
• ...
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Loop variant

Technique that measures the distance between the current state and the final state.

A loop variant V is an integer expression s.t.
• is positive in the beginning of each round (c ∧ I ⇒ V > 0)
• decreases in every round (c ∧ I ⇒ V > V ′)

r=x;
q=0;
while (y <= r) {

r = r-y;
q = q+1;

}

• V = r − y is not a good variant
• V = r − y + 1 is a good variant

y ≤ r ⇒ V > 0 at each round
V > V ′ after each round
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Exercises

int sum(int v[], int N) {
int i = 0, r = 0;
while (i!=N) {

// variant : ???
r = r + v[i];
i=i+1;

}
return r;

}

Ex. 2.6: Find variant above

Ex. 2.7: Find variants of the loops in previous exercises
(when searching for invariants)
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